Data-Intensive Computing: Massive Data Processing

DIC Systems

- Google MapReduce
 - Yahoo Hadoop/PIG
 - Data parallel computing
- IBM Research System S
 - InfosphereStream product
 - Continuous data stream processing
- Microsoft Dryad/Dryad LINQ
 - DAG processing
 - Some SQL query support

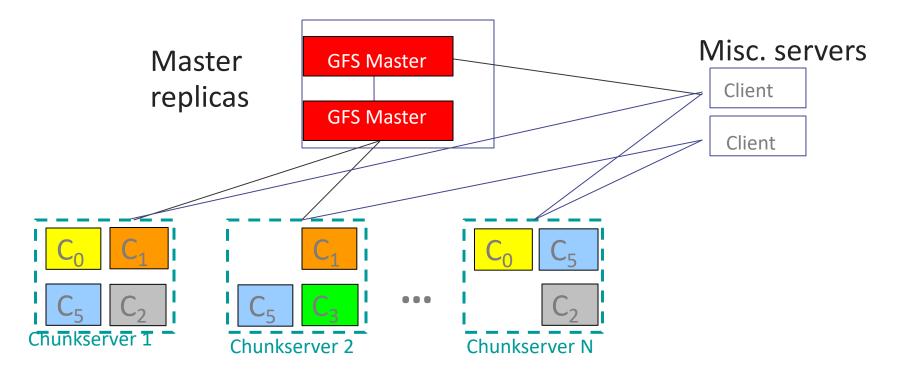
The Building Blocks of DIC at Google

- Distributed file systems: GFS
- Distributed storage: BigTable
- Job scheduler: the workqueue
- Parallel computation: MapReduce
- Distributed lock server: chubby

GFS: The Google File System

- Reliable distributed storage system for petabyte scale filesystems.
- Data kept in 64-megabyte "chunks" stored on disks spread across thousands of machines
- Each chunk replicated, usually 3 times, on different machines so that GFS can recover seamlessly from disk or machine failure.
- A GFS cluster consists of a single master server, multiple chunkservers, and is accessed by multiple clients.

GFS: The Google File System



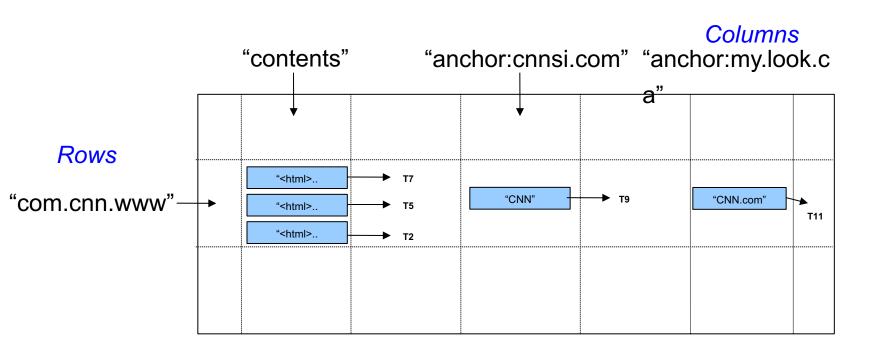
- Master manages metadata
- Data transfers happen directly between clients/chunkservers
- Files broken into chunks (typically 64 MB)
- Chunks triplicated across three machines for safety

BigTable

- A distributed storage system for managing structured data
 - Designed to scale to a very large size: petabytes of data across thousands of commodity servers.
- Built on top of GFS
- Used by more than 60 Google products and projects
 - Google Earth, Google Finance, Orkut, ...

Basic Data Model

- Triple (row, column, timestamp) -> keys for lookup, insert, and delete API
- Arbitrary "columns" on a row-by-row basis
 - Column "family:qualifier": Family is heavyweight, qualifier lightweight
 - Column-oriented physical store: rows are sparse!



Rows

- Name is an arbitrary string.
 - Access to data in a row is atomic.
 - Row creation is implicit upon storing data.
 - Transactions within a row
- Rows ordered lexicographically
 - Rows close together lexicographically usually on one or a small number of machines.
- Does not support relational model
 - No table wide integrity constants
 - No multirow transactions

MapReduce

- A parallel programming model and an associated implementation for processing and generating large data sets.
- A user specified map function processes a key/value pair to generate a set of intermediate key/value pairs.
- A user specified **reduce** function merges all intermediate values associated with the same intermediate key.
- Programs written in this functional style are automatically parallelized and executed on a large cluster of commodity machines.

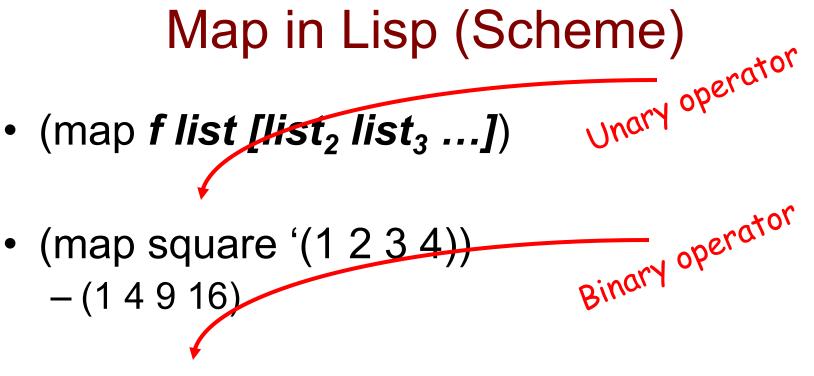
Motivation

- Large-Scale Data Processing
 - Want to use 1000s of CPUs
 - But don't want hassle of *managing* things
- MapReduce runtime provides
 - Automatic parallelization & distribution
 - Fault tolerance
 - I/O scheduling
 - Monitoring & status updates

Map/Reduce

Map/Reduce

- Programming model from Lisp
 (and other functional languages)
- Many problems can be phrased this way
- Easy to distribute across nodes
- Failure/retry semantics



• (reduce + '(1 4 9 16))

- 30

• (reduce + (map square (map $- I_1 I_2$))))

Map/Reduce at Google

- map(key, val) is run on each item in set – emits new-key / new-val pairs
- reduce(key, vals) is run for each unique key emitted by map()
 - emits final output

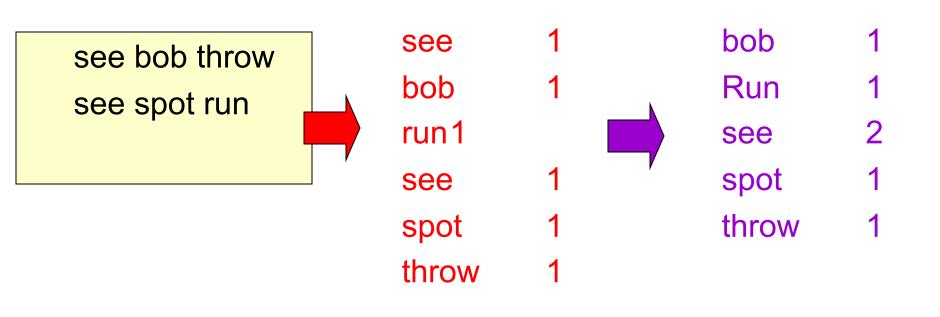
count words in docs

- Input consists of (url, contents) pairs
- map(key=url, val=contents):
 - For each word w in contents, emit (w, "1")
- reduce(key=word, values=uniq_counts):
 - Sum all "1"s in values list
 - Emit result "(word, sum)"

Count, Illustrated

map(key=url, val=contents):

For each word *w* in contents, emit (w, "1") reduce(key=word, values=uniq_counts): Sum all "1"s in values list Emit result "(word, sum)"



Grep

- Input consists of (url+offset, single line)
- map(key=url+offset, val=line):
 - If contents matches regexp, emit (line, "1")
- reduce(key=line, values=uniq_counts):
 - Don't do anything; just emit line

Reverse Web-Link Graph

- Map
 - For each URL linking to target, ...
 - Output <target, source> pairs
- Reduce
 - Concatenate list of all source URLs
 - Outputs: <target, *list* (source)> pairs

Implementation Overview

Typical cluster:

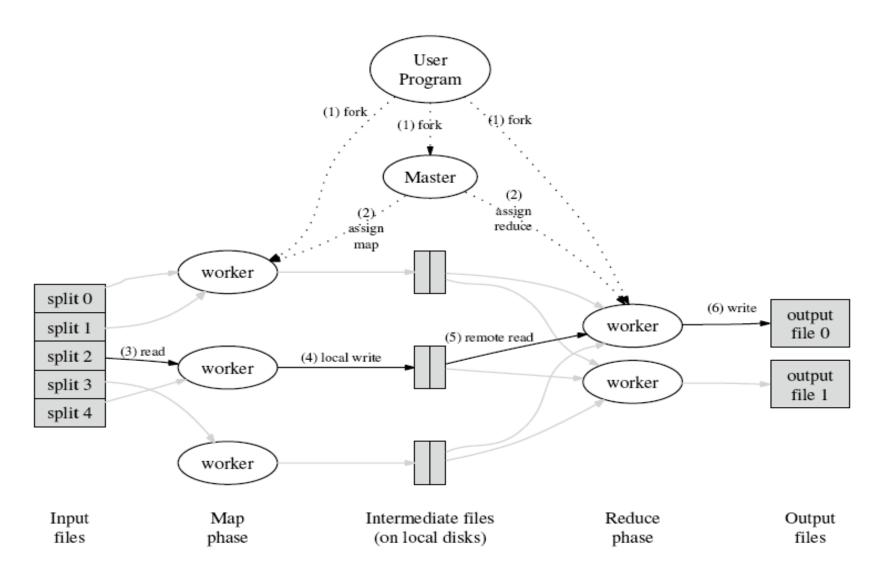
- 100s/1000s of 2-CPU x86 machines, 2-4 GB of memory
- Limited bisection bandwidth
- Storage is on local IDE disks
- GFS: distributed file system manages data
- Job scheduling system: jobs made up of tasks, scheduler assigns tasks to machines

Implementation is a C++ library linked into user programs

MapReduce Runtime System

- How is this distributed?
 - Partition input key/value pairs into chunks, run map() tasks in parallel
 - After all map()s are complete, consolidate all emitted values for each unique emitted key
 - Partition space of output map keys, and run reduce() in parallel
- If map() or reduce() fails, reexecute!

Distributed Execution



Example: Count word occurrences

```
map(String input key, String input value):
  // input key: document name
  // input value: document contents
  for each word w in input value:
    EmitIntermediate(w, "1");
reduce (String output key, Iterator
  intermediate values):
  // output key: a word
  // output values: a list of counts
  int result = 0;
```

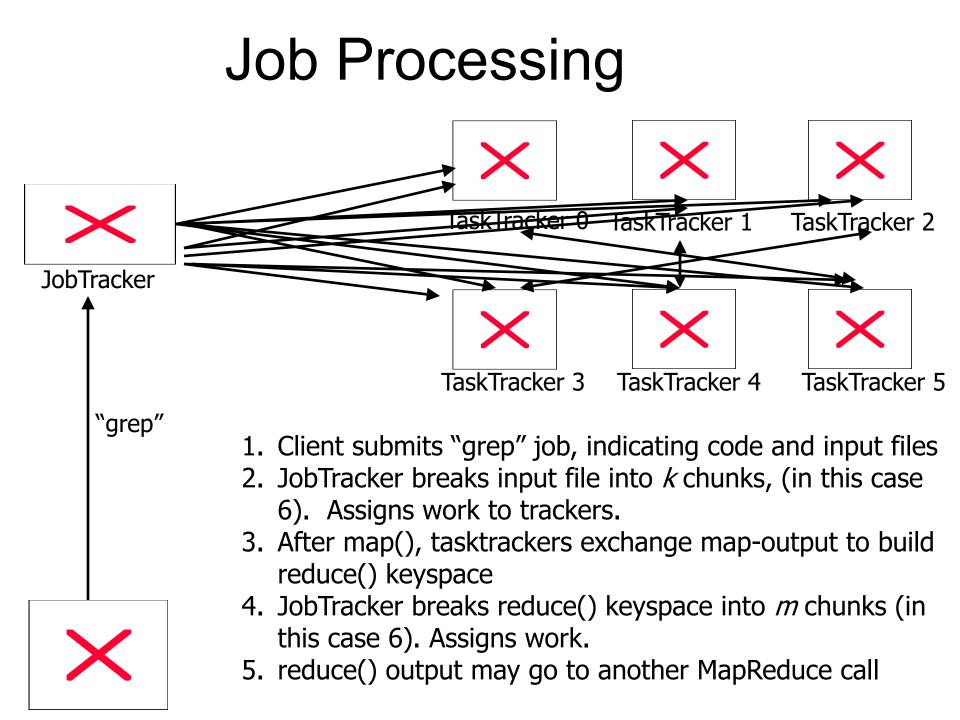
for each v in intermediate_values:

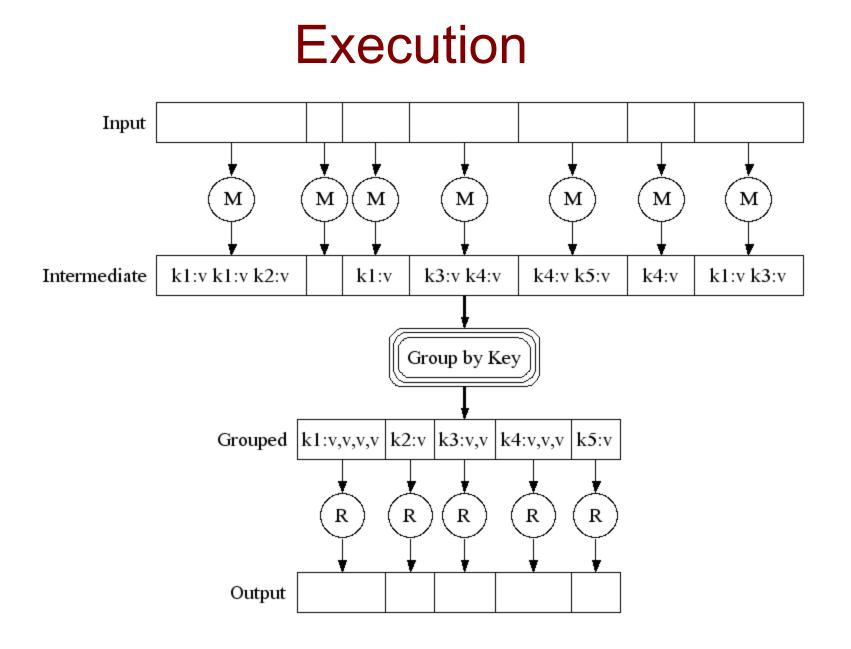
```
result += ParseInt(v);
```

```
Emit(AsString(result));
```

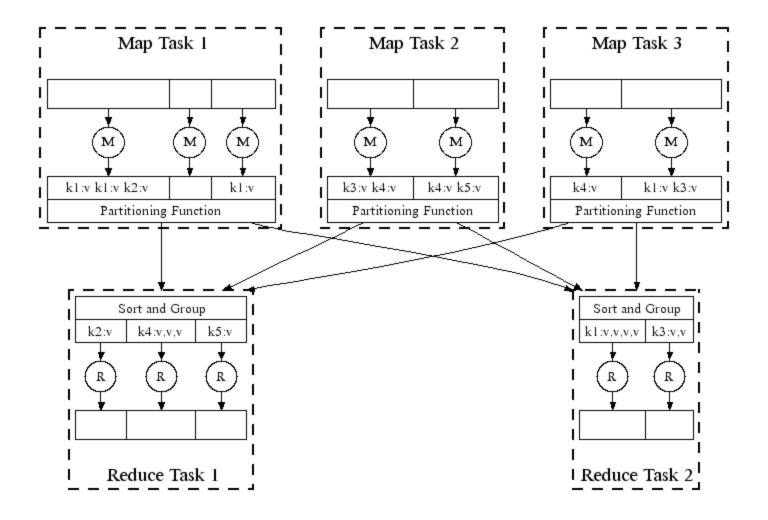
Example vs. Actual Source Code

- Example is written in pseudo-code
- Actual implementation is in C++, using a MapReduce library
- Bindings for Python and Java exist via interfaces
- True code is somewhat more involved (defines how the input key/values are divided up and accessed, etc.)





Parallel Execution



Fault Tolerance

Handled via re-execution

- Detect failure via periodic heartbeats
- Re-execute completed + in-progress map tasks (why?)
- Re-execute in progress *reduce* tasks (why?)
- Task completion committed through master

Robust: lost 1600/1800 machines once \rightarrow finished ok

Refinement: Redundant Execution

Slow workers significantly delay completion time

- Other jobs consuming resources on machine
- Bad disks w/ soft errors transfer data slowly
- Weird things: processor caches disabled (!!)

Solution: Near end of phase, spawn backup tasks — Whichever one finishes first "wins"

Dramatically shortens job completion time

Refinement: Locality Optimization

- Master scheduling policy
 - Ask GFS for locations of replicas of input file blocks
 - Map tasks typically split into 64MB (GFS block size)
 - Map tasks scheduled so GFS input block replica are on same machine or same rack
- Effect
 - Thousands of machines read input at local disk speed
 - Without this, rack switches limit read rate

Refinement Skipping Bad Records

- Map/Reduce functions sometimes fail for particular inputs
 - Best solution is to debug & fix
 - Not always possible ~ third-party source libraries
 - On segmentation fault:
 - Send UDP packet to master from signal handler
 - Include sequence number of record being processed
 - If master sees two failures for same record:
 - Next worker is told to skip the record

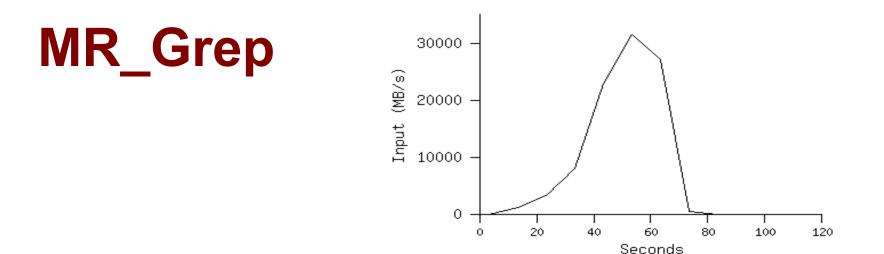
Performance

Tests run on cluster of 1800 machines:

- 4 GB of memory
- Dual-processor 2 GHz Xeons with Hyperthreading
- Dual 160 GB IDE disks
- Gigabit Ethernet per machine
- Bisection bandwidth approximately 100 Gbps

Two benchmarks:

- MR_GrepScan 1010 100-byte records to extract records matching a rare pattern (92K matching records)
- MR_SortSort 1010 100-byte records (modeled after TeraSort benchmark)



Locality optimization helps:

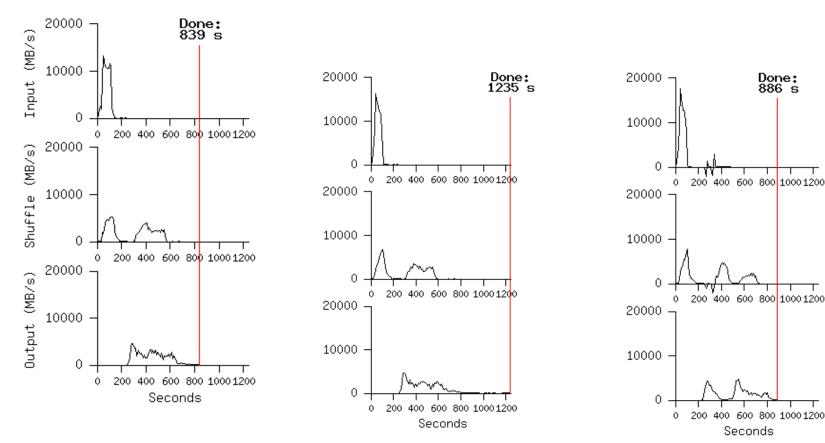
- 1800 machines read 1 TB at peak ~31GB/s
- W/out this, rack switches would limit to 10 GB/s

Startup overhead is significant for short jobs

Normal

No backup tasks

200 processes killed



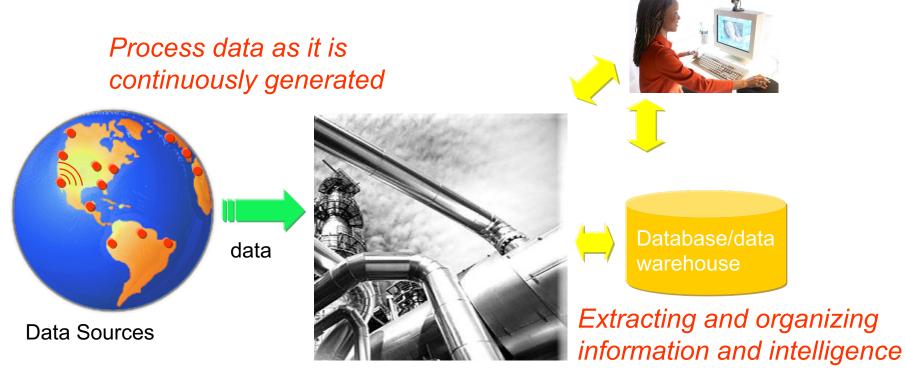
- Backup tasks reduce job completion time a lot!
- System deals well with failures

MapReduce Summary

- MapReduce has proven to be a useful distributed programming abstraction
- Greatly simplifies large-scale data-intensive computing
- Functional programming paradigm can be applied to many data analysis applications
- Fun to use: focus on problem, let library deal with messy details

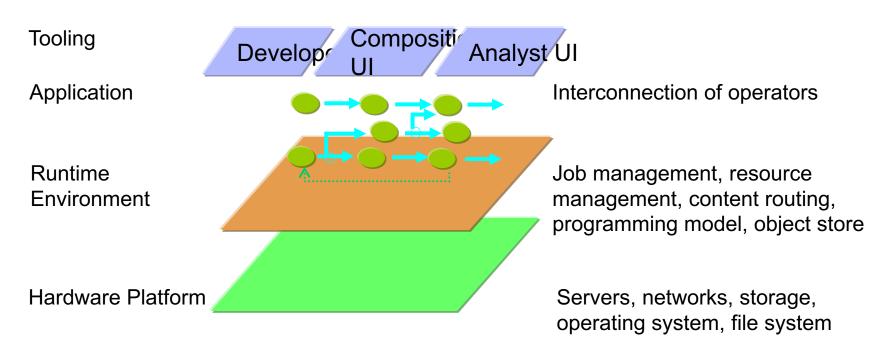
What is Stream Processing?

Minimizing time to react



Stream Processing System

What Makes a Stream Processing System?

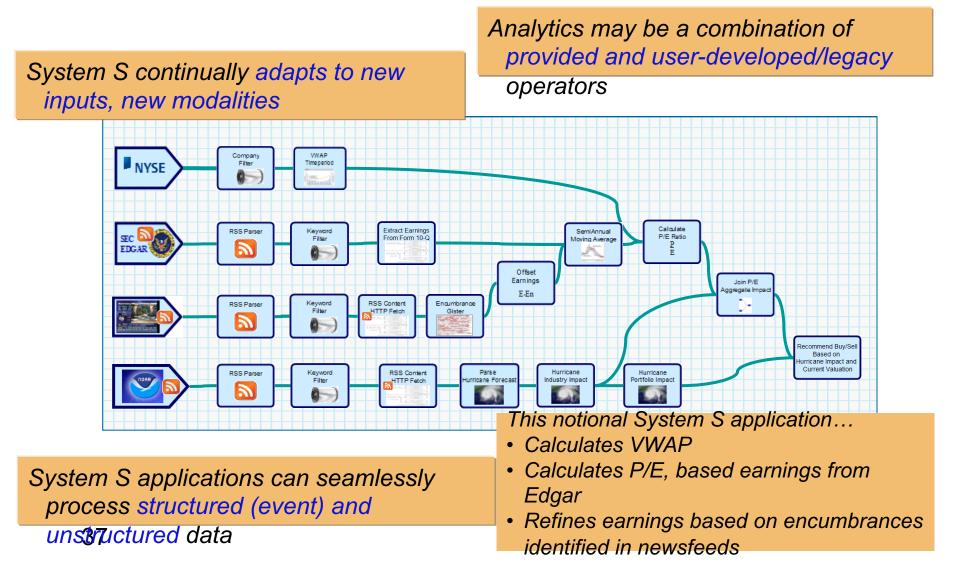


Stream Processing System

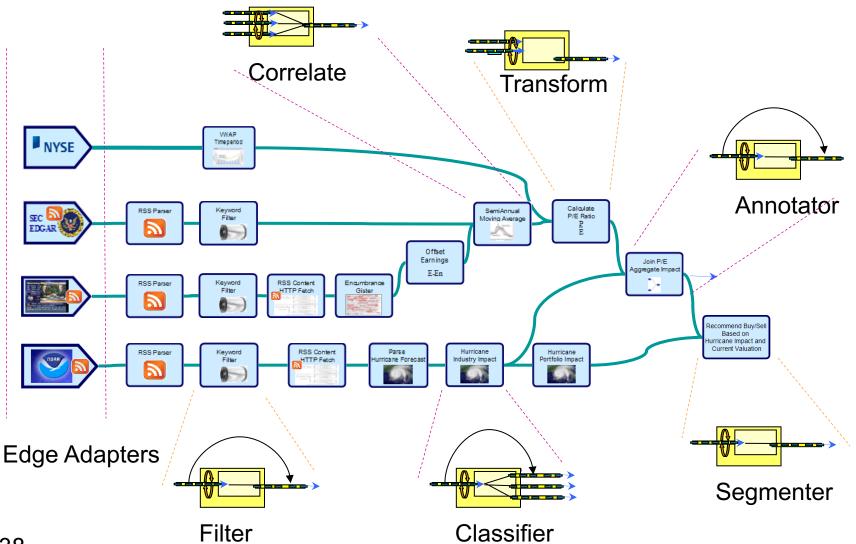
System S Stream Processing

- New stream computing paradigm
- Pull information from anywhere in real time
- Ultra-low latency, ultra-high throughput
- Scalable

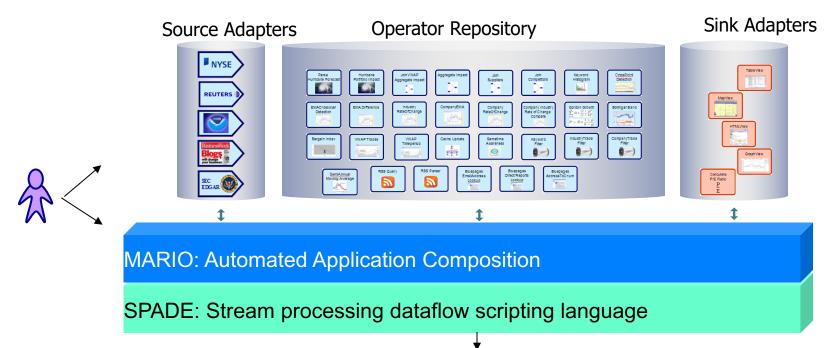
System S: A Closer Look



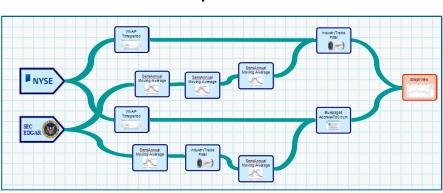
SPADE Building Blocks Classifiers, Annotators, Correlators, Filters, Aggregators



Application Programming



- Consumable
- Reusable set of operators
- Connectors to external static or streaming data sources and sinks



Platform Optimized Compilation

SPADE

- SPADE (*Stream Processing Application Declarative Engine*) is an intermediate language for streaming applications.
 - <u>Simplifies</u> design of applications used by System S
 - Hides complexities of
 - manipulating data streams (e.g., contains generic language support for data types and building block operations)
 - fanning out applications to distributed heterogeneous nodes
 - transporting data through diverse computer infrastructures (ingesting external data, routing intermediate results, looping in feedback, branching, outputing the results, ...)

[Application] SourceSink trace

[Typedefs] typespace sourcesink

typedef id_t Integer
typedef timestamp_t Long

[Program]

Source Aggregate Functor Sink

// virtual schema declaration
vstream Sensor (id : id_t, location : Double, light : Float, temperature : Float, timestamp :

timestamp_t)

// a source stream is generated by a Source operator – in this case tuples come from an input file stream <u>SenSource</u> (schemaFor(Sensor))

:= Source() ["file:///SenSource.dat"] {}

// this intermediate stream is produced by an Aggregate operator, using the SenSource stream as input

```
stream SenAggregator ( schemaFor(Sensor) )
```

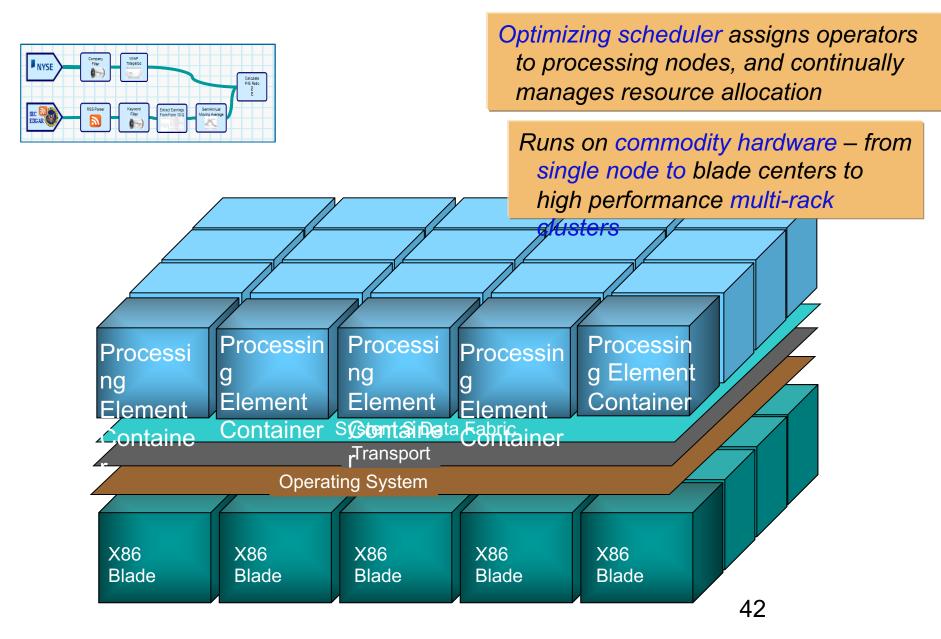
:= Aggregate(<u>SenSource</u> <count(100),count(1)>) [*id* . *location*]

{ Any(id), Any(location), Max(light), Min(temperature), Avg(timestamp) }

// this intermediate stream is produced by a functor operator
stream SenFunctor (id: Integer, location: Double, message: String)
:= Functor(SenAggregator) [log(temperature,2.0)>6.0]
{ id, location, "Node "+toString(id)+ " at location "+toString(location) }

// result management is done by a sink operator – in this case produced tuples are sent to a socket Null := Sink(<u>SenFunctor</u>) ["cudp://192.168.0.144:5500/"] {}

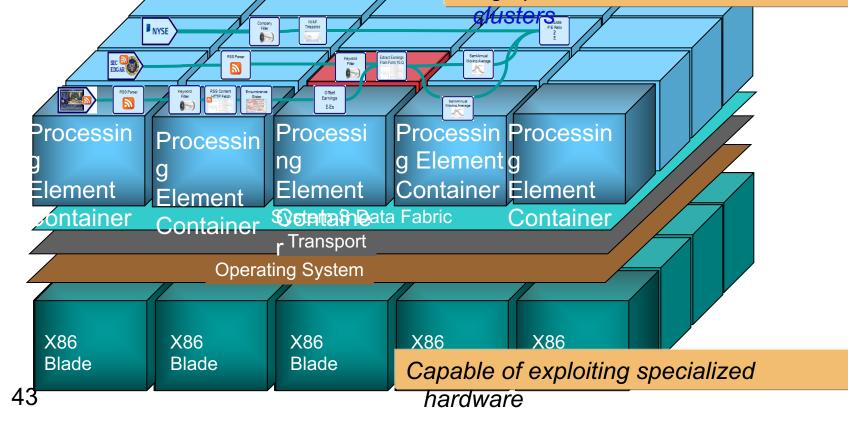
System S Runtime Services



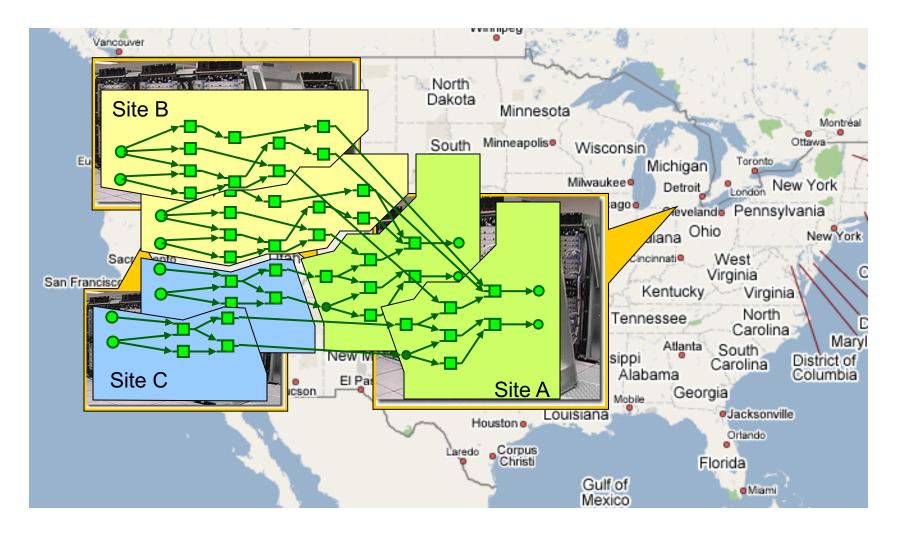
System S Runtime Services

Adapts to changes in resources, workload, data rates **Optimizing scheduler** assigns operators to processing nodes, and continually manages resource allocation

Runs on commodity hardware – from single node to blade centers to high performance multi-rack



Distributed operation



Summary Simplified Processing Flow Graph

