
Data-Intensive Computing: 
Massive Data Processing



DIC Systems
• Google MapReduce
• Yahoo Hadoop/PIG
• Data parallel computing 

• IBM Research System S
• InfosphereStream product
• Continuous data stream processing

• Microsoft Dryad/Dryad LINQ
• DAG processing
• Some SQL query support



The Building Blocks of DIC 
at Google

• Distributed file systems: GFS
• Distributed storage: BigTable
• Job scheduler: the workqueue
• Parallel computation: MapReduce
• Distributed lock server: chubby



GFS: The Google File System

• Reliable distributed storage system for 
petabyte scale filesystems.

• Data kept in 64-megabyte “chunks” stored on 
disks spread across thousands of machines

• Each chunk replicated, usually 3 times, on 
different machines so that GFS can recover 
seamlessly from disk or machine failure.

• A GFS cluster consists of a single master 
server, multiple chunkservers, and is 
accessed by multiple clients.
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• Master manages metadata
• Data transfers happen directly between clients/chunkservers
• Files broken into chunks (typically 64 MB)
• Chunks triplicated across three machines for safety

GFS: The Google File System
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BigTable

• A distributed storage system for managing 
structured data 
• Designed to scale to a very large size: petabytes of 

data across thousands of commodity servers.

• Built on top of GFS
• Used by more than 60 Google products and 

projects 
• Google Earth, Google Finance, Orkut, …



Basic Data Model
• Triple (row, column, timestamp) -> keys for lookup, insert, and delete API

• Arbitrary “columns” on a row-by-row basis

• Column “family:qualifier”: Family is heavyweight, qualifier lightweight

• Column-oriented physical store: rows are sparse!
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Rows
• Name is an arbitrary string.

– Access to data in a row is atomic.

– Row creation is implicit upon storing data.

– Transactions within a row

• Rows ordered lexicographically

– Rows close together lexicographically usually on one 
or a small number of machines.

• Does not support relational model

– No table wide integrity constants

– No multirow transactions



MapReduce
• A parallel programming model and an associated 
implementation for processing and generating large data 
sets.

• A user specified map function processes a key/value 
pair to generate a set of intermediate key/value pairs.

• A user specified reduce function merges all 
intermediate values associated with the same 
intermediate key.

• Programs written in this functional style are 
automatically parallelized and executed on a large 
cluster of commodity machines.



Motivation
• Large-Scale Data Processing

– Want to use 1000s of CPUs
• But don’t want hassle of managing things

• MapReduce runtime provides
– Automatic parallelization & distribution
– Fault tolerance
– I/O scheduling
– Monitoring & status updates



Map/Reduce
• Map/Reduce 

– Programming model from Lisp 
– (and other functional languages)

• Many problems can be phrased this way
• Easy to distribute across nodes
• Failure/retry semantics



Map in Lisp (Scheme)

• (map f list [list2 list3 …])

• (map square ‘(1 2 3 4))
– (1 4 9 16)

• (reduce + ‘(1 4 9 16))
– (+ 16 (+ 9 (+ 4 1
– 30

• (reduce + (map square (map – l1 l2))))

Unary operator

Binary operator



Map/Reduce at Google

• map(key, val) is run on each item in set
– emits new-key / new-val pairs

• reduce(key, vals) is run for each unique key 
emitted by map()
– emits final output



count words in docs

– Input consists of (url, contents) pairs

– map(key=url, val=contents):
• For each word w in contents, emit (w, “1”)

– reduce(key=word, values=uniq_counts):
• Sum all “1”s in values list
• Emit result “(word, sum)”



Count, 
Illustrated

map(key=url, val=contents):
For each word w in contents, emit (w, “1”)

reduce(key=word, values=uniq_counts):
Sum all “1”s in values list
Emit result “(word, sum)”

see bob throw
see spot run

see 1
bob 1 
run1           
see 1
spot 1
throw 1

bob 1 
Run 1
see 2
spot 1
throw 1



Grep

– Input consists of (url+offset, single line)
– map(key=url+offset, val=line):

• If contents matches regexp, emit (line, “1”)

– reduce(key=line, values=uniq_counts):
• Don’t do anything; just emit line



Reverse Web-Link Graph

• Map
– For each URL linking to target, …
– Output <target, source> pairs 

• Reduce
– Concatenate list of all source URLs
– Outputs: <target, list (source)> pairs



Typical cluster:

• 100s/1000s of 2-CPU x86 machines, 2-4 GB of 
memory 
• Limited bisection bandwidth 
• Storage is on local IDE disks 
• GFS: distributed file system manages data
• Job scheduling system: jobs made up of tasks, 

scheduler assigns tasks to machines 

Implementation is a C++ library linked into user programs

Implementation Overview



MapReduce Runtime System

• How is this distributed?
n Partition input key/value pairs into chunks, 

run map() tasks in parallel
n After all map()s are complete, consolidate all 

emitted values for each unique emitted key
n Partition space of output map keys, and run 

reduce() in parallel
• If map() or reduce() fails, reexecute!



Distributed Execution



Example: Count word occurrences
map(String input_key, String input_value):

// input_key: document name 

// input_value: document contents 

for each word w in input_value: 

EmitIntermediate(w, "1"); 

reduce(String output_key, Iterator 
intermediate_values): 

// output_key: a word 

// output_values: a list of counts 

int result = 0; 

for each v in intermediate_values: 

result += ParseInt(v);

Emit(AsString(result)); 



Example vs. Actual Source Code

• Example is written in pseudo-code
• Actual implementation is in C++, using a 

MapReduce library
• Bindings for Python and Java exist via interfaces
• True code is somewhat more involved (defines 

how the input key/values are divided up and 
accessed, etc.)



Job Processing

JobTracker

TaskTracker 0 TaskTracker 1 TaskTracker 2

TaskTracker 3 TaskTracker 4 TaskTracker 5

1. Client submits “grep” job, indicating code and input files
2. JobTracker breaks input file into k chunks, (in this case 

6).  Assigns work to trackers.
3. After map(), tasktrackers exchange map-output to build 

reduce() keyspace
4. JobTracker breaks reduce() keyspace into m chunks (in 

this case 6). Assigns work.
5. reduce() output may go to another MapReduce call

“grep”



Execution



Parallel Execution 



Handled via re-execution
– Detect failure via periodic heartbeats
– Re-execute completed + in-progress map

tasks (why?)
– Re-execute in progress reduce tasks (why?)
– Task completion committed through master 

Robust: lost 1600/1800 machines once à finished ok

Fault Tolerance 



Slow workers significantly delay completion time 
– Other jobs consuming resources on machine 
– Bad disks w/ soft errors transfer data slowly 
– Weird things: processor caches disabled (!!) 

Solution: Near end of phase, spawn backup tasks 
– Whichever one finishes first "wins" 

Dramatically shortens job completion time 

Refinement: 
Redundant Execution



Refinement: 
Locality Optimization

• Master scheduling policy
– Ask GFS for locations of replicas of input file blocks 
– Map tasks typically split into 64MB (GFS block size) 
– Map tasks scheduled so GFS input block replica are 

on same machine or same rack 

• Effect
– Thousands of machines read input at local disk speed 

• Without this, rack switches limit read rate



Refinement
Skipping Bad Records

• Map/Reduce functions sometimes fail for 
particular inputs 
– Best solution is to debug & fix

• Not always possible ~ third-party source libraries 
– On segmentation fault: 

• Send UDP packet to master from signal handler 
• Include sequence number of record being processed 

– If master sees two failures for same record: 
• Next worker is told to skip the record



Tests run on cluster of 1800 machines:
– 4 GB of memory 
– Dual-processor 2 GHz Xeons with Hyperthreading 
– Dual 160 GB IDE disks 
– Gigabit Ethernet per machine 
– Bisection bandwidth approximately 100 Gbps

Two benchmarks:
MR_GrepScan 1010 100-byte records to extract records 

matching a rare pattern (92K matching records) 

MR_SortSort 1010 100-byte records (modeled after TeraSort
benchmark)

Performance



MR_Grep

Locality optimization helps: 
• 1800 machines read 1 TB at peak ~31GB/s 
• W/out this, rack switches would limit to 10 GB/s 

Startup overhead is significant for short jobs 



Normal No backup tasks 200 processes killed

MR_Sort

• Backup tasks reduce job completion time a lot!
• System deals well with failures



MapReduce Summary

• MapReduce has proven to be a useful 
distributed programming abstraction 

• Greatly simplifies large-scale data-intensive 
computing 

• Functional programming paradigm can be 
applied to many data analysis applications

• Fun to use: focus on problem, let library 
deal with messy details 
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What is Stream Processing?

Database/data 
warehouse 

Data Sources

data

Stream Processing System

Process data as it is 
continuously generated

Extracting and organizing 
information and intelligence 

Minimizing time to react 
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What Makes a Stream 
Processing System?

Stream Processing System

Tooling Developer UIComposition
UI Analyst UI

Hardware Platform Servers, networks, storage, 
operating system, file system

Runtime 
Environment

Job management, resource 
management, content routing, 
programming model, object store

Application Interconnection of operators
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System S Stream Processing
• New stream computing paradigm
• Pull information from anywhere in real time
• Ultra-low latency, ultra-high throughput
• Scalable
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System S: A Closer Look

This notional System S application…
• Calculates VWAP
• Calculates P/E, based earnings from 

Edgar
• Refines earnings based on encumbrances 

identified in newsfeeds

System S continually adapts to new 
inputs, new modalities 

Analytics may be a combination of 
provided and user-developed/legacy
operators

System S applications can seamlessly 
process structured (event) and 
unstructured data
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SPADE Building Blocks
Classifiers, Annotators, Correlators, Filters, Aggregators

Correlate Transform

Annotator

Segmenter

ClassifierFilter

Edge Adapters
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Application Programming

• Consumable
• Reusable set of operators
• Connectors to external 

static or streaming data 
sources and sinks

Source Adapters Sink AdaptersOperator Repository

SPADE: Stream processing dataflow scripting language

MARIO: Automated Application Composition

Platform Optimized Compilation
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SPADE
• SPADE (Stream Processing Application Declarative Engine) 

is an intermediate language for streaming applications. 
– Simplifies design of applications used by System S
– Hides complexities of

• manipulating data streams (e.g., contains generic 
language support for data types and building block 
operations) 

• fanning out applications to distributed heterogeneous 
nodes 

• transporting data through diverse computer 
infrastructures (ingesting external data, routing 
intermediate results, looping in feedback, branching, 
outputing the results, ...)



41

[Application]
SourceSink trace

[Typedefs]
typespace sourcesink

typedef id_t Integer
typedef timestamp_t Long

[Program]
// virtual schema declaration
vstream Sensor (id : id_t, location : Double, light : Float, temperature : Float, timestamp : 
timestamp_t)

// a source stream is generated by a Source operator – in this case tuples come from an input file
stream SenSource ( schemaFor(Sensor) )

:= Source( ) [ “file:///SenSource.dat” ] {}

// this intermediate stream is produced by an Aggregate operator, using the SenSource stream as 
input
stream SenAggregator ( schemaFor(Sensor) )

:= Aggregate( SenSource <count(100),count(1)> ) [ id . location ]
{ Any(id), Any(location), Max(light), Min(temperature), Avg(timestamp) }   

// this intermediate stream is produced by a functor operator
stream SenFunctor ( id: Integer, location: Double, message: String )

:= Functor( SenAggregator ) [ log(temperature,2.0)>6.0 ]
{ id, location, “Node ”+toString(id)+ “ at location ”+toString(location) }  

// result management is done by a sink operator – in this case produced tuples are sent to a socket
Null := Sink( SenFunctor ) [ “cudp://192.168.0.144:5500/” ] {}

SinkSource Aggregate Functor
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Optimizing scheduler assigns operators 
to processing nodes, and continually 
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Runs on commodity hardware – from 
single node to blade centers to 
high performance multi-rack 
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Optimizing scheduler assigns operators 
to processing nodes, and continually 
manages resource allocationAdapts to changes in 

resources, workload, data 
rates

Capable of exploiting specialized 
hardware

Runs on commodity hardware – from 
single node to blade centers to 
high performance multi-rack 
clusters
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Summary
Simplified Processing Flow Graph
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