
Data-Intensive Computing:
Massive Data Processing

DIC Systems
• Google MapReduce
• Yahoo Hadoop/PIG
• Data parallel computing

• IBM Research System S
• InfosphereStream product
• Continuous data stream processing

• Microsoft Dryad/Dryad LINQ
• DAG processing
• Some SQL query support

The Building Blocks of DIC
at Google

• Distributed file systems: GFS
• Distributed storage: BigTable
• Job scheduler: the workqueue
• Parallel computation: MapReduce
• Distributed lock server: chubby

GFS: The Google File System

• Reliable distributed storage system for
petabyte scale filesystems.

• Data kept in 64-megabyte “chunks” stored on
disks spread across thousands of machines

• Each chunk replicated, usually 3 times, on
different machines so that GFS can recover
seamlessly from disk or machine failure.

• A GFS cluster consists of a single master
server, multiple chunkservers, and is
accessed by multiple clients.

Client

Client

Misc. servers

Client

Master
replicas

GFS Master

GFS Master

C0 C1

C2C5
Chunkserver 1

C0 C5

Chunkserver N

C1

C3C5
Chunkserver 2

…

• Master manages metadata
• Data transfers happen directly between clients/chunkservers
• Files broken into chunks (typically 64 MB)
• Chunks triplicated across three machines for safety

GFS: The Google File System

C2

BigTable

• A distributed storage system for managing
structured data
• Designed to scale to a very large size: petabytes of

data across thousands of commodity servers.

• Built on top of GFS
• Used by more than 60 Google products and

projects
• Google Earth, Google Finance, Orkut, …

Basic Data Model
• Triple (row, column, timestamp) -> keys for lookup, insert, and delete API

• Arbitrary “columns” on a row-by-row basis

• Column “family:qualifier”: Family is heavyweight, qualifier lightweight

• Column-oriented physical store: rows are sparse!

“contents”

“com.cnn.www”

Rows

Columns

“<html>..

“<html>..

“<html>..

“CNN” “CNN.com”

T2

T5

T7

T9

T11

“anchor:cnnsi.com” “anchor:my.look.c
a”

Rows
• Name is an arbitrary string.

– Access to data in a row is atomic.

– Row creation is implicit upon storing data.

– Transactions within a row

• Rows ordered lexicographically

– Rows close together lexicographically usually on one
or a small number of machines.

• Does not support relational model

– No table wide integrity constants

– No multirow transactions

MapReduce
• A parallel programming model and an associated
implementation for processing and generating large data
sets.

• A user specified map function processes a key/value
pair to generate a set of intermediate key/value pairs.

• A user specified reduce function merges all
intermediate values associated with the same
intermediate key.

• Programs written in this functional style are
automatically parallelized and executed on a large
cluster of commodity machines.

Motivation
• Large-Scale Data Processing

– Want to use 1000s of CPUs
• But don’t want hassle of managing things

• MapReduce runtime provides
– Automatic parallelization & distribution
– Fault tolerance
– I/O scheduling
– Monitoring & status updates

Map/Reduce
• Map/Reduce

– Programming model from Lisp
– (and other functional languages)

• Many problems can be phrased this way
• Easy to distribute across nodes
• Failure/retry semantics

Map in Lisp (Scheme)

• (map f list [list2 list3 …])

• (map square ‘(1 2 3 4))
– (1 4 9 16)

• (reduce + ‘(1 4 9 16))
– (+ 16 (+ 9 (+ 4 1
– 30

• (reduce + (map square (map – l1 l2))))

Unary operator

Binary operator

Map/Reduce at Google

• map(key, val) is run on each item in set
– emits new-key / new-val pairs

• reduce(key, vals) is run for each unique key
emitted by map()
– emits final output

count words in docs

– Input consists of (url, contents) pairs

– map(key=url, val=contents):
• For each word w in contents, emit (w, “1”)

– reduce(key=word, values=uniq_counts):
• Sum all “1”s in values list
• Emit result “(word, sum)”

Count,
Illustrated

map(key=url, val=contents):
For each word w in contents, emit (w, “1”)

reduce(key=word, values=uniq_counts):
Sum all “1”s in values list
Emit result “(word, sum)”

see bob throw
see spot run

see 1
bob 1
run1
see 1
spot 1
throw 1

bob 1
Run 1
see 2
spot 1
throw 1

Grep

– Input consists of (url+offset, single line)
– map(key=url+offset, val=line):

• If contents matches regexp, emit (line, “1”)

– reduce(key=line, values=uniq_counts):
• Don’t do anything; just emit line

Reverse Web-Link Graph

• Map
– For each URL linking to target, …
– Output <target, source> pairs

• Reduce
– Concatenate list of all source URLs
– Outputs: <target, list (source)> pairs

Typical cluster:

• 100s/1000s of 2-CPU x86 machines, 2-4 GB of
memory
• Limited bisection bandwidth
• Storage is on local IDE disks
• GFS: distributed file system manages data
• Job scheduling system: jobs made up of tasks,

scheduler assigns tasks to machines

Implementation is a C++ library linked into user programs

Implementation Overview

MapReduce Runtime System

• How is this distributed?
n Partition input key/value pairs into chunks,

run map() tasks in parallel
n After all map()s are complete, consolidate all

emitted values for each unique emitted key
n Partition space of output map keys, and run

reduce() in parallel
• If map() or reduce() fails, reexecute!

Distributed Execution

Example: Count word occurrences
map(String input_key, String input_value):

// input_key: document name

// input_value: document contents

for each word w in input_value:

EmitIntermediate(w, "1");

reduce(String output_key, Iterator
intermediate_values):

// output_key: a word

// output_values: a list of counts

int result = 0;

for each v in intermediate_values:

result += ParseInt(v);

Emit(AsString(result));

Example vs. Actual Source Code

• Example is written in pseudo-code
• Actual implementation is in C++, using a

MapReduce library
• Bindings for Python and Java exist via interfaces
• True code is somewhat more involved (defines

how the input key/values are divided up and
accessed, etc.)

Job Processing

JobTracker

TaskTracker 0 TaskTracker 1 TaskTracker 2

TaskTracker 3 TaskTracker 4 TaskTracker 5

1. Client submits “grep” job, indicating code and input files
2. JobTracker breaks input file into k chunks, (in this case

6). Assigns work to trackers.
3. After map(), tasktrackers exchange map-output to build

reduce() keyspace
4. JobTracker breaks reduce() keyspace into m chunks (in

this case 6). Assigns work.
5. reduce() output may go to another MapReduce call

“grep”

Execution

Parallel Execution

Handled via re-execution
– Detect failure via periodic heartbeats
– Re-execute completed + in-progress map

tasks (why?)
– Re-execute in progress reduce tasks (why?)
– Task completion committed through master

Robust: lost 1600/1800 machines once à finished ok

Fault Tolerance

Slow workers significantly delay completion time
– Other jobs consuming resources on machine
– Bad disks w/ soft errors transfer data slowly
– Weird things: processor caches disabled (!!)

Solution: Near end of phase, spawn backup tasks
– Whichever one finishes first "wins"

Dramatically shortens job completion time

Refinement:
Redundant Execution

Refinement:
Locality Optimization

• Master scheduling policy
– Ask GFS for locations of replicas of input file blocks
– Map tasks typically split into 64MB (GFS block size)
– Map tasks scheduled so GFS input block replica are

on same machine or same rack

• Effect
– Thousands of machines read input at local disk speed

• Without this, rack switches limit read rate

Refinement
Skipping Bad Records

• Map/Reduce functions sometimes fail for
particular inputs
– Best solution is to debug & fix

• Not always possible ~ third-party source libraries
– On segmentation fault:

• Send UDP packet to master from signal handler
• Include sequence number of record being processed

– If master sees two failures for same record:
• Next worker is told to skip the record

Tests run on cluster of 1800 machines:
– 4 GB of memory
– Dual-processor 2 GHz Xeons with Hyperthreading
– Dual 160 GB IDE disks
– Gigabit Ethernet per machine
– Bisection bandwidth approximately 100 Gbps

Two benchmarks:
MR_GrepScan 1010 100-byte records to extract records

matching a rare pattern (92K matching records)

MR_SortSort 1010 100-byte records (modeled after TeraSort
benchmark)

Performance

MR_Grep

Locality optimization helps:
• 1800 machines read 1 TB at peak ~31GB/s
• W/out this, rack switches would limit to 10 GB/s

Startup overhead is significant for short jobs

Normal No backup tasks 200 processes killed

MR_Sort

• Backup tasks reduce job completion time a lot!
• System deals well with failures

MapReduce Summary

• MapReduce has proven to be a useful
distributed programming abstraction

• Greatly simplifies large-scale data-intensive
computing

• Functional programming paradigm can be
applied to many data analysis applications

• Fun to use: focus on problem, let library
deal with messy details

34

What is Stream Processing?

Database/data
warehouse

Data Sources

data

Stream Processing System

Process data as it is
continuously generated

Extracting and organizing
information and intelligence

Minimizing time to react

35

What Makes a Stream
Processing System?

Stream Processing System

Tooling Developer UIComposition
UI Analyst UI

Hardware Platform Servers, networks, storage,
operating system, file system

Runtime
Environment

Job management, resource
management, content routing,
programming model, object store

Application Interconnection of operators

36

System S Stream Processing
• New stream computing paradigm
• Pull information from anywhere in real time
• Ultra-low latency, ultra-high throughput
• Scalable

37

System S: A Closer Look

This notional System S application…
• Calculates VWAP
• Calculates P/E, based earnings from

Edgar
• Refines earnings based on encumbrances

identified in newsfeeds

System S continually adapts to new
inputs, new modalities

Analytics may be a combination of
provided and user-developed/legacy
operators

System S applications can seamlessly
process structured (event) and
unstructured data

38

SPADE Building Blocks
Classifiers, Annotators, Correlators, Filters, Aggregators

Correlate Transform

Annotator

Segmenter

ClassifierFilter

Edge Adapters

39

Application Programming

• Consumable
• Reusable set of operators
• Connectors to external

static or streaming data
sources and sinks

Source Adapters Sink AdaptersOperator Repository

SPADE: Stream processing dataflow scripting language

MARIO: Automated Application Composition

Platform Optimized Compilation

40

SPADE
• SPADE (Stream Processing Application Declarative Engine)

is an intermediate language for streaming applications.
– Simplifies design of applications used by System S
– Hides complexities of

• manipulating data streams (e.g., contains generic
language support for data types and building block
operations)

• fanning out applications to distributed heterogeneous
nodes

• transporting data through diverse computer
infrastructures (ingesting external data, routing
intermediate results, looping in feedback, branching,
outputing the results, ...)

41

[Application]
SourceSink trace

[Typedefs]
typespace sourcesink

typedef id_t Integer
typedef timestamp_t Long

[Program]
// virtual schema declaration
vstream Sensor (id : id_t, location : Double, light : Float, temperature : Float, timestamp :
timestamp_t)

// a source stream is generated by a Source operator – in this case tuples come from an input file
stream SenSource (schemaFor(Sensor))

:= Source() [“file:///SenSource.dat”] {}

// this intermediate stream is produced by an Aggregate operator, using the SenSource stream as
input
stream SenAggregator (schemaFor(Sensor))

:= Aggregate(SenSource <count(100),count(1)>) [id . location]
{ Any(id), Any(location), Max(light), Min(temperature), Avg(timestamp) }

// this intermediate stream is produced by a functor operator
stream SenFunctor (id: Integer, location: Double, message: String)

:= Functor(SenAggregator) [log(temperature,2.0)>6.0]
{ id, location, “Node ”+toString(id)+ “ at location ”+toString(location) }

// result management is done by a sink operator – in this case produced tuples are sent to a socket
Null := Sink(SenFunctor) [“cudp://192.168.0.144:5500/”] {}

SinkSource Aggregate Functor

42

X86
Box

X86
Blade

Cell
Blade

X86
Blade

FPGA
Blade

X86
Blade

X86
Blade

X86
Blade

X86
Blade

X86
Blade

Operating System

System S Runtime Services

Transport
System S Data Fabric

Processi
ng
Element
Containe
r

Processin
g
Element
Container

Processi
ng
Element
Containe
r

Processin
g
Element
Container

Processin
g Element
Container

Optimizing scheduler assigns operators
to processing nodes, and continually
manages resource allocation

Runs on commodity hardware – from
single node to blade centers to
high performance multi-rack
clusters

43

BG Node BG node BG nodeBG nodeBG nodeX86
Blade

FPGA
Blade

X86
Blade

X86
Blade

Cell
Blade

X86
Blade

X86
Blade

X86
Blade

X86
Blade

X86
Blade

Operating System
Transport

System S Data Fabric

System S Runtime Services

Processin
g
Element
Container

Processin
g
Element
Container

Processi
ng
Element
Containe
r

Processin
g Element
Container

Processin
g
Element
Container

Optimizing scheduler assigns operators
to processing nodes, and continually
manages resource allocationAdapts to changes in

resources, workload, data
rates

Capable of exploiting specialized
hardware

Runs on commodity hardware – from
single node to blade centers to
high performance multi-rack
clusters

44

Site C

Site B

Site A

Distributed operation

Site C

Site B

Site A

45

Summary
Simplified Processing Flow Graph

UDP
Source

Data
Demux

Hankel
Construct

Hankel
Construct

Hankel
Construct

Pick Top
Signals
(SVD)

Pick Top
Signals
(SVD)

Pick Top
Signals
(SVD)

Frequency
estimates

Frequency
estimates

Frequency
estimates

Denoise
frequency
estimates

Least
Square
Solver

Least
Square
Solver

Least
Square
Solver

X

Y

Z

X

Y

Z

Separated
waves V vector

