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•  Synchronous Distributed System 
•   Each message is received within bounded time 
•   Drift of each process’ local clock has a known bound 
•   Each step in a process takes lb < time < ub 
•  Ex:A collection of processors connected by a communication 

bus, e.g., a Cray supercomputer 
•  Asynchronous Distributed System 

•   No bounds on process execution 
•   The drift rate of a clock is arbitrary  
•   No bounds on message transmission delays 
•  Ex:The Internet is an asynchronous distributed system 

•  This is a more powerful model than the synchronous system 
model. A protocol for an asynchronous system will also work for a 
synchronous system (though not vice-versa) 

•  It would be impossible to accurately synchronize the clocks of two 
communicating processes in an asynchronous system 

Two Different System Models 



•  But is accurate (or approximate) clock sync. even required? 
•  Wouldn’t a logical ordering among events at processes suffice? 
•  Lamport’s happens-before (→) among events: 

•   On the same process: a → b, if time(a) < time(b)  
•   If p1 sends m to p2: send(m) → receive(m) 
•   If a → b and  b → c then  a → c 

•   Lamport’s logical timestamps preserve causality: 
•   All processes use a local counter (logical clock) with initial 

value of zero 
•  Just before each event, the local counter is incremented by 1 

and assigned to the event as its timestamp 
•   A send (message) event carries its timestamp   
•   For a receive (message) event, the counter is updated by  

 max(receiver’s-local-counter, message-timestamp) + 1 

Logic Clocks 
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Lamport Timestamps 
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Logical Time 
•  Logical timestamps preserve causality of events,  

 i.e., a → b ==> TS(a) < TS(b)  
•  Can be used instead of physical timestamps 
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Corrected Example: Lamport Logical Time  
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logically concurrent 
events"
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• a → b ==> TS(a) < TS(b)  but not the other way around 
• Logical time does not account for out-of-band messages 

Corrected Example: Lamport Logical Time  



III. Global Snapshot Algorithm  

   Can you capture (record) the states of all processes 
and communication channels at exactly 10:04:50 am? 

   Is it necessary to take such an exact snapshot? 
   Chandy and Lamport snapshot algorithm: records a 

logical (or causal) snapshot of the system. 
 System Model: 

   No failures, all messages arrive intact, exactly once, 
eventually 

   Communication channels are unidirectional and FIFO-
ordered 

   There is a communication path between every process pair 



Chandy and Lamport Snapshot Algorithm  
1. Marker (token message) sending rule for initiator process P0 

    After P0 has recorded its state 
•   for each outgoing channel C, send a marker on C  

2. Marker receiving rule for a process Pk : 
       On receipt of a marker over channel C 

    if this is first marker being received at Pk 
-  record Pk’s state 
-  record the state of C as “empty” 
-  turn on recording of messages over all other incoming 

channels 
-  for each outgoing channel C, send a marker on C  

   else 
-  turn off recording messages only on channel C, and mark 

state of C as all the messages recorded over C 
  Protocol terminates when every process has received a marker 

from every other process 
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Consistent Cut 

Consistent Cut =time-cut across processors and channels so no event  
after the cut “happens-before” an event before the cut 



IV. Give it a thought 

Have you ever wondered why distributed server 
vendors always only offer solutions that promise 
five-9’s reliability, seven-9’s reliability, but never 100%  
reliable? 

The fault lies in the impossibility of consensus 



What is Consensus? 

•  N processes 
•  Each process p has  

–  input variable xp : initially either 0 or 1 
–  output variable yp : initially b 

•  Consensus problem: design a protocol so that either 
–  all processes set their output variables to 0  
–  Or all processes set their output variables to 1 
–  There is at least one initial state that leads to each outcome 

above 



Why is Consensus Important 
•  Many problems in distributed systems are equivalent 

to (or harder than) consensus! 
–  Agreement (harder than consensus, since it can be used to 

solve consensus) 
–  Leader election (select exactly one leader, and every alive 

process knows about it) 
–  Failure Detection 

•  Consensus using leader election 
     Choose 0 or 1 based on the last bit of the identity of the elected 

leader.  



Let’s Try to Solve Consensus! 

•  Uh, what’s the model? (assumptions!) 
•  Synchronous system: bounds on 

–  Message delays 
–  Max time for each process step 
e.g., multiprocessor (common clock across processors) 

•  Asynchronous system: no such bounds! 
    e.g., The Internet! The Web! 
•  Processes can fail by stopping (crash-stop 

failures) 



-  For a system with at most f processes crashing 
-  All processes are synchronized and operate in “rounds” of time 
-  the algorithm proceeds in f+1 rounds (with timeout), using reliable 

communication to all members - Valuesr
i: the set of proposed values 

known to Pi at the beginning of round r. 
- Initially Values0

i = {} ; Values1
i = {vi} 

  for round = 1 to f+1 do 
  multicast (Values ri –  Valuesr-1

i) 
   Values r+1

i  Valuesr
i 

  for each vj received  
   Values r+1

i = Values r+1
i  ∪ vj 

  end 
  end 
 di = minimum(Values f+1

i) 

Consensus in a Synchronous System 
Possible to achieve! 



Why does the Algorithm Work? 
•  Proof by contradiction. 
•  Assume that two non-faulty processes, say pi and pj , 

differ in their final set of values (i.e., after f+1 rounds) 
•  Assume that pi possesses a value v that pj does not 

possess. 
 pi  must have received v in the last round (why?) 
 A third process, pk, sent v to pi, and crashed before 

sending v to pj. 
 Similarly, a fourth process sending v in the last-but-

one round must have crashed; otherwise, both pk and 
pj should have received v. 

 Proceeding in this way, we infer at least one (unique) 
crash in each of the preceding rounds.  

 But we have assumed at most f crashes can occur 
and there are f+1 rounds  contradiction. 



Consensus in an 
Asynchronous System 

•  Impossible to achieve! 
–  even a single failed process is enough to avoid the 

system from reaching agreement 

•  Proved in a now-famous result by Fischer, Lynch and 
Patterson, 1983  (FLP) 
–  Stopped many distributed system designers dead in 

their tracks 
–  A lot of claims of “reliability” vanished overnight 



Recall 

•  Each process p has a state 
–  program counter, registers, stack, local variables  
–  input register xp : initially either 0 or 1 
–  output register yp : initially b 

•  Consensus Problem: design a protocol so that either 
–  all processes set their output variables to 0  
–  Or all processes set their output variables to 1 

•  For impossibility proof, OK to consider (i) more restrictive 
system model, and (ii) easier problem 



p p’ 

Global Message Buffer 

send(p’,m) 
receive(p’) 

 may return null 

“Network” 



•  State of a process 
•  Configuration=global state. Collection of states, one for 

each process; and state of the global buffer. 
•  Each Event (different from Lamport events) 

–  receipt of a message by a process (say p) 
–  processing of message (may change recipient’s state) 
–  sending out of all necessary messages by p 

•  Schedule: sequence of events 
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Lemma 1 
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Disjoint schedules are 
commutative  



•  Let config. C have a set of decision values V 
reachable from it 
–  If |V| = 2, config. C is bivalent 
–  If |V| = 1, config. C is 0-valent or 1-valent, as is the 

case 

•  Bivalent means outcome is unpredictable  



What the FLP Proof Shows 

1.  There exists an initial configuration that is 
bivalent 

2.  Starting from a bivalent config., there is always 
another bivalent config. that is reachable 



Lemma 2 
Some initial configuration is bivalent 

• Suppose all initial configurations were either 0-valent or 1-valent. 
• If there are N processes, there are 2N possible initial configurations 
• Place all configurations side-by-side (in a lattice), where  

 adjacent configurations differ in initial xp value  
 for exactly one process. 

  1         1          0        1        0         1 

• There has to be some adjacent pair of 1-valent and 0-valent configs. 



Lemma 2 
Some initial configuration is bivalent 

  1         1          0        1        0         1 

• There has to be some adjacent pair of 1-valent and 0-valent configs. 
• Let the process p that has a different state across these two configs. be 
   the process that has crashed (silent throughout) 

Both initial configs. will 
lead to the same config. 
for the same sequence of 
events 

Therefore, at least one of 
these initial configs. are 
bivalent when there is 
such a failure 



What we’ll Show 

1.  There exists an initial configuration that is 
bivalent 

2.  Starting from a bivalent config., there is always 
another bivalent config. that is reachable 



Lemma 3 
Starting from a bivalent config., 

there is always another bivalent 
config. that is reachable 



Lemma 3 

A bivalent initial config. 
let e=(p,m) be an applicable  
    event to the initial config. 

Let C be the set of configs. reachable  
  without applying e 



Lemma 3 

A bivalent initial config. 
let e=(p,m) be an applicable  
    event to the initial config. 

Let C be the set of configs. reachable  
  without applying e 

 e       e       e           e        e 
Let D be the set of configs.  
  obtained by applying e to some  
  config. in C 



Lemma 3 

D 

C 

 e       e       e           e        e 

bivalent 

 [don’t apply  
  event e=(p,m)] 



Claim. D contains a bivalent config. 
Proof.  By contradiction. 
1.  D contains both 0- and 1-valent configurations 

(why?) 
2.  There are states C0 and C1 in C such that  
      C1 = C0 followed by some event e’=(p’,m’) 
  and  

–  D0 is 0-valent, D1 is 1-valent 
–  D0=C0 foll. by e=(p,m) 
–  D1=C1 foll. by e=(p,m) 

D 
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 e       e       e           e        e 

bivalent 

 [don’t apply  
  event e=(p,m)] 

D0 D1 

C1 C0 



Proof. (contd.) 

•  Case I: p’ is not p 

•  Case II: p’ same as p 
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 [don’t apply  
  event e=(p,m)] 
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Why? (Lemma 1) 
But D0 is then bivalent! 



Proof. (contd.) 

•  Case I: p’ is not p 

•  Case II: p’ same as p 
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 [don’t apply  
  event e=(p,m)] 
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•  finite 
•  deciding run from C0 
•  p takes no steps 

But A is then bivalent! 



Lemma 3 
Starting from a bivalent config., there 

is always another bivalent config. 
that is reachable 



Putting it all Together 
•  Lemma 2: There exists an initial configuration that is 

bivalent 
•  Lemma 3: Starting from a bivalent config., there is 

always another bivalent config. that is reachable 

•  Theorem (Impossibility of Consensus): There is always a 
run of events in an asynchronous distributed system 
such that the group of processes never reach consensus 
(i.e., stays bivalent all the time) 



Summary  
•  Consensus Problem  

–  agreement in distributed systems 
–  Solution exists in synchronous system model (e.g., 

supercomputer) 
–  Impossible to solve in an asynchronous system (e.g., 

Internet, Web) 
•  Key idea: with even one (adversarial) crash-stop 

process failure, there are always sequences of 
events for the system to decide any which way 

•  Whatever algorithm you choose! 
–  FLP impossibility proof 


