
Distributed System
Fundamentals

Xiaohui (Helen) Gu

Agenda

I.  Synchronous versus Asynchronous systems
II.  Lamport Timestamps
III.  Global Snapshots
IV.  Impossibility of Consensus proof

•  Synchronous Distributed System
•  Each message is received within bounded time
•  Drift of each process’ local clock has a known bound
•  Each step in a process takes lb < time < ub
•  Ex:A collection of processors connected by a communication

bus, e.g., a Cray supercomputer
•  Asynchronous Distributed System

•  No bounds on process execution
•  The drift rate of a clock is arbitrary
•  No bounds on message transmission delays
•  Ex:The Internet is an asynchronous distributed system

•  This is a more powerful model than the synchronous system
model. A protocol for an asynchronous system will also work for a
synchronous system (though not vice-versa)

•  It would be impossible to accurately synchronize the clocks of two
communicating processes in an asynchronous system

Two Different System Models

•  But is accurate (or approximate) clock sync. even required?
•  Wouldn’t a logical ordering among events at processes suffice?
•  Lamport’s happens-before (→) among events:

•  On the same process: a → b, if time(a) < time(b)
•  If p1 sends m to p2: send(m) → receive(m)
•  If a → b and b → c then a → c

•  Lamport’s logical timestamps preserve causality:
•  All processes use a local counter (logical clock) with initial

value of zero
•  Just before each event, the local counter is incremented by 1

and assigned to the event as its timestamp
•  A send (message) event carries its timestamp
•  For a receive (message) event, the counter is updated by

 max(receiver’s-local-counter, message-timestamp) + 1

Logic Clocks

Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

Lamport Timestamps

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

Logical Time
•  Logical timestamps preserve causality of events,

 i.e., a → b ==> TS(a) < TS(b)
•  Can be used instead of physical timestamps

Host 1"

Host 2"

Host 3"

Host 4"

1

2

2

3

3

54

5

3

6

4

5 10!

7

0

0

0

0

1!

2!

4!

3! 6!

4!

7!

n Clock Value"

Message"timestamp!

Physical Time"

Spot the Mistake

Corrected Example: Lamport Logical Time

Host 1"

Host 2"

Host 3"

Host 4"

1

2

2

3

3

54

5

7

6

8

9 10!

7

0

0

0

0

1!

2!

4!

3! 6!

8!

7!

n Clock Value"

Message"timestamp!

Physical Time"

logically concurrent
events"

Host 1"

Host 2"

Host 3"

Host 4"

1

2

2

3

3

54

5

7

6

8

9 10!

7

0

0

0

0

1!

2!

4!

3! 6!

8!

7!

n Clock Value"

Message"timestamp!

Physical Time"

• a → b ==> TS(a) < TS(b) but not the other way around
• Logical time does not account for out-of-band messages

Corrected Example: Lamport Logical Time

III. Global Snapshot Algorithm

  Can you capture (record) the states of all processes
and communication channels at exactly 10:04:50 am?

  Is it necessary to take such an exact snapshot?
  Chandy and Lamport snapshot algorithm: records a

logical (or causal) snapshot of the system.
 System Model:

  No failures, all messages arrive intact, exactly once,
eventually

  Communication channels are unidirectional and FIFO-
ordered

  There is a communication path between every process pair

Chandy and Lamport Snapshot Algorithm
1. Marker (token message) sending rule for initiator process P0

  After P0 has recorded its state
•  for each outgoing channel C, send a marker on C

2. Marker receiving rule for a process Pk :
 On receipt of a marker over channel C

  if this is first marker being received at Pk
-  record Pk’s state
-  record the state of C as “empty”
-  turn on recording of messages over all other incoming

channels
-  for each outgoing channel C, send a marker on C

  else
-  turn off recording messages only on channel C, and mark

state of C as all the messages recorded over C
  Protocol terminates when every process has received a marker

from every other process

Snapshot Example
P1"

P2"

P3"

e1
0"

e2
0"

e2
5"

e3
0"

e1
3"

a!

b!

M!

e1
1,2"

M!

1- P1 initiates snapshot: records its state (S1); sends Markers to P2 & P3;
turns on recording for channels C21 and C31"

e2
2,3,4"

M!

M!

2- P2 receives Marker over C12, records its state (S2), sets state(C12) = {}
sends Marker to P1 & P3; turns on recording for channel C32"

e1
4"

3- P1 receives Marker over C21, sets state(C21) = {a}"

e3
3,4,5"

M!

M!

4- P3 receives Marker over C13, records its state (S3), sets state(C13) = {}
sends Marker to P1 & P2; turns on recording for channel C23"

e2
6"

5- P2 receives Marker over C32, sets state(C32) = {b}"

e3
6"

6- P3 receives Marker over C23, sets state(C23) = {}"

e1
6"

7- P1 receives Marker over C31, sets state(C31) = {}"

Consistent Cut

Consistent Cut =time-cut across processors and channels so no event
after the cut “happens-before” an event before the cut

IV. Give it a thought

Have you ever wondered why distributed server
vendors always only offer solutions that promise
five-9’s reliability, seven-9’s reliability, but never 100%
reliable?

The fault lies in the impossibility of consensus

What is Consensus?

•  N processes
•  Each process p has

–  input variable xp : initially either 0 or 1
–  output variable yp : initially b

•  Consensus problem: design a protocol so that either
–  all processes set their output variables to 0
–  Or all processes set their output variables to 1
–  There is at least one initial state that leads to each outcome

above

Why is Consensus Important
•  Many problems in distributed systems are equivalent

to (or harder than) consensus!
–  Agreement (harder than consensus, since it can be used to

solve consensus)
–  Leader election (select exactly one leader, and every alive

process knows about it)
–  Failure Detection

•  Consensus using leader election
 Choose 0 or 1 based on the last bit of the identity of the elected

leader.

Let’s Try to Solve Consensus!

•  Uh, what’s the model? (assumptions!)
•  Synchronous system: bounds on

–  Message delays
–  Max time for each process step
e.g., multiprocessor (common clock across processors)

•  Asynchronous system: no such bounds!
 e.g., The Internet! The Web!
•  Processes can fail by stopping (crash-stop

failures)

-  For a system with at most f processes crashing
-  All processes are synchronized and operate in “rounds” of time
-  the algorithm proceeds in f+1 rounds (with timeout), using reliable

communication to all members - Valuesr
i: the set of proposed values

known to Pi at the beginning of round r.
- Initially Values0

i = {} ; Values1
i = {vi}

 for round = 1 to f+1 do
 multicast (Values ri – Valuesr-1

i)
 Values r+1

i  Valuesr
i

 for each vj received
 Values r+1

i = Values r+1
i ∪ vj

 end
 end
 di = minimum(Values f+1

i)

Consensus in a Synchronous System
Possible to achieve!

Why does the Algorithm Work?
•  Proof by contradiction.
•  Assume that two non-faulty processes, say pi and pj ,

differ in their final set of values (i.e., after f+1 rounds)
•  Assume that pi possesses a value v that pj does not

possess.
 pi must have received v in the last round (why?)
 A third process, pk, sent v to pi, and crashed before

sending v to pj.
 Similarly, a fourth process sending v in the last-but-

one round must have crashed; otherwise, both pk and
pj should have received v.

 Proceeding in this way, we infer at least one (unique)
crash in each of the preceding rounds.

 But we have assumed at most f crashes can occur
and there are f+1 rounds  contradiction.

Consensus in an
Asynchronous System

•  Impossible to achieve!
–  even a single failed process is enough to avoid the

system from reaching agreement

•  Proved in a now-famous result by Fischer, Lynch and
Patterson, 1983 (FLP)
–  Stopped many distributed system designers dead in

their tracks
–  A lot of claims of “reliability” vanished overnight

Recall

•  Each process p has a state
–  program counter, registers, stack, local variables
–  input register xp : initially either 0 or 1
–  output register yp : initially b

•  Consensus Problem: design a protocol so that either
–  all processes set their output variables to 0
–  Or all processes set their output variables to 1

•  For impossibility proof, OK to consider (i) more restrictive
system model, and (ii) easier problem

p p’

Global Message Buffer

send(p’,m)
receive(p’)

 may return null

“Network”

•  State of a process
•  Configuration=global state. Collection of states, one for

each process; and state of the global buffer.
•  Each Event (different from Lamport events)

–  receipt of a message by a process (say p)
–  processing of message (may change recipient’s state)
–  sending out of all necessary messages by p

•  Schedule: sequence of events

C

C’

C’’

Event e’=(p’,m’)

Event e’’=(p’’,m’’)

Configuration C

Schedule s=(e’,e’’)

C

C’’

Equivalent

Lemma 1

C

C’

C’’

Schedule s1

Schedule s2

s2

s1

s1 and s2 involve
disjoint sets of
receiving processes

Disjoint schedules are
commutative

•  Let config. C have a set of decision values V
reachable from it
–  If |V| = 2, config. C is bivalent
–  If |V| = 1, config. C is 0-valent or 1-valent, as is the

case

•  Bivalent means outcome is unpredictable

What the FLP Proof Shows

1.  There exists an initial configuration that is
bivalent

2.  Starting from a bivalent config., there is always
another bivalent config. that is reachable

Lemma 2
Some initial configuration is bivalent

• Suppose all initial configurations were either 0-valent or 1-valent.
• If there are N processes, there are 2N possible initial configurations
• Place all configurations side-by-side (in a lattice), where

 adjacent configurations differ in initial xp value
 for exactly one process.

 1 1 0 1 0 1

• There has to be some adjacent pair of 1-valent and 0-valent configs.

Lemma 2
Some initial configuration is bivalent

 1 1 0 1 0 1

• There has to be some adjacent pair of 1-valent and 0-valent configs.
• Let the process p that has a different state across these two configs. be
 the process that has crashed (silent throughout)

Both initial configs. will
lead to the same config.
for the same sequence of
events

Therefore, at least one of
these initial configs. are
bivalent when there is
such a failure

What we’ll Show

1.  There exists an initial configuration that is
bivalent

2.  Starting from a bivalent config., there is always
another bivalent config. that is reachable

Lemma 3
Starting from a bivalent config.,

there is always another bivalent
config. that is reachable

Lemma 3

A bivalent initial config.
let e=(p,m) be an applicable
 event to the initial config.

Let C be the set of configs. reachable
 without applying e

Lemma 3

A bivalent initial config.
let e=(p,m) be an applicable
 event to the initial config.

Let C be the set of configs. reachable
 without applying e

 e e e e e
Let D be the set of configs.
 obtained by applying e to some
 config. in C

Lemma 3

D

C

 e e e e e

bivalent

 [don’t apply
 event e=(p,m)]

Claim. D contains a bivalent config.
Proof. By contradiction.
1.  D contains both 0- and 1-valent configurations

(why?)
2.  There are states C0 and C1 in C such that
 C1 = C0 followed by some event e’=(p’,m’)
 and

–  D0 is 0-valent, D1 is 1-valent
–  D0=C0 foll. by e=(p,m)
–  D1=C1 foll. by e=(p,m)

D

C

 e e e e e

bivalent

 [don’t apply
 event e=(p,m)]

D0 D1

C1 C0

Proof. (contd.)

•  Case I: p’ is not p

•  Case II: p’ same as p

D

C

 e e e e e

bivalent

 [don’t apply
 event e=(p,m)]

C0

D1

D0 C1

e

e e’

e’

Why? (Lemma 1)
But D0 is then bivalent!

Proof. (contd.)

•  Case I: p’ is not p

•  Case II: p’ same as p

D

C

 e e e e e

bivalent

 [don’t apply
 event e=(p,m)]

C0

D1

D0
C1

e e’

A

E0

e

sch. s

sch. s

E1

sch. s

(e’,e)

e

sch. s
•  finite
•  deciding run from C0
•  p takes no steps

But A is then bivalent!

Lemma 3
Starting from a bivalent config., there

is always another bivalent config.
that is reachable

Putting it all Together
•  Lemma 2: There exists an initial configuration that is

bivalent
•  Lemma 3: Starting from a bivalent config., there is

always another bivalent config. that is reachable

•  Theorem (Impossibility of Consensus): There is always a
run of events in an asynchronous distributed system
such that the group of processes never reach consensus
(i.e., stays bivalent all the time)

Summary
•  Consensus Problem

–  agreement in distributed systems
–  Solution exists in synchronous system model (e.g.,

supercomputer)
–  Impossible to solve in an asynchronous system (e.g.,

Internet, Web)
•  Key idea: with even one (adversarial) crash-stop

process failure, there are always sequences of
events for the system to decide any which way

•  Whatever algorithm you choose!
–  FLP impossibility proof

