Automatic Detection of Runtime Performance Bugs in Cloud-like Environments

Zachary Parks, WeiRui Wang, Lalit Bangad

Motivation

- General: Runtime bugs
 - major challenge for large-scale, complex distributed systems
- Specific: Timeout and data-corruption bugs
 - sources of runtime performance degradation
- Crucial to understand the nature and causes of these bugs through practical approaches for detecting, diagnosing, and resolving them

Timeout Bugs

- Cause
 - System fails to respond within timeout period
 - Improper use of timeout parameters
- Impacts
 - Server systems hanging
 - Performance degradation

Detecting Timeout Bugs

Following the procedure similar to one outlined in TScope¹:

- When a performance bug occurs, we will use LTTng to retrieve a window of system call traces
- We will then extract the system calls related to timeout bugs
- Use total execution time (provided by LTTng trace windows) to generate feature vectors
- Use unsupervised behavior learning to detect execution time anomalies
 - Determine if, when an anomaly is found, the anomaly involves timeout-related system calls

Data Corruption Bugs

- Cause
 - Data stored or processed by a system becomes incorrect or inconsistent
- Impacts
 - Hanging and performance degradation
 - Complete outage/unresponsiveness

Detecting Data Corruption Bugs

Following the procedure outlined in DScope²:

- We will use the Soot compiler framework to generate IR from Java application bytecode
 - Then, we will traverse the control flow graph (CFG) to perform loop path extraction
 - Next, identify I/O dependent loops
 - Loop stride and bound analysis

Things to Learn and Do

- Building experimental environments (VCL):
 - Hadoop Common
 - HDFS
 - MapReduce
 - Soot compiler framework
- Replicating bugs and data collection:
 - BugZilla, Apache Jira
 - LTTng kernel tracing
- Unsupervised behavior learning:
 - SOM?
 - Restricted Boltzmann Machine?

WeiRui

Zach

References

- Jingzhu He, Ting Dai, and Xiaohui Gu. 2018. TScope: Automatic Timeout Bug Identification for Server Systems. http://dance.csc.ncsu.edu/papers/ICAC18.pdf
- Ting Dai and Jingzhu He and Xiaohui Gu and Shan Lu and Peipei Wang.
 2018. DScope: Detecting Real-World Data Corruption Hang Bugs in Cloud Server Systems. <u>http://dance.csc.ncsu.edu/papers/SOCC18.pdf</u>

NC STATE UNIVERSITY

Thank you!

Questions?