
Understanding and Detecting
Software Upgrade Failures in
Distributed Systems
Huangxing Chen

Background
Introduction

Intro

As for the upgrading:

● Upgrading is unavoidable and will is done frequently.
● Most of the severe outages and failures are from system

upgrading(e.g. Azure and Dropbox outage …)
● There are some special failures that will only show up when

upgrading, specifically

When we build our services on distributed system, we will want
upgrading for:

● Adding new features
● Improve performance
● …

Motivation
Upgrade failures are problematic because:

● They are not caused simply by code bugs or misconfiguration
● They may have large scale influence that can paralyze the

whole system
● System is vulnerable when updating and failures can greatly

affect the service quality
● They can lead to data and system state corruption
● Difficult to run test case for the upgrade process
● Failure data is hard to collect

Goals

● Prove that most of the upgrade failures are with high severity
and hard to be caught before being released to the public

● Find out the root causes and methods to avoid them
● Define the trigger conditions of failures as a guidance to

develop testing framework and cases
● Build tools to tackle these failures

Methodology

Studied 123 kinds of reported and resolved failures from 8
data-intensive systems(e.g HDFS, Hadoop MapReduce
framework…)

There are limitations:
● Representativeness of Reports and Distributed System
● The filtering criteria of the failure reports
● Observer errors(minimized by cross-inspection)

In-depth Analysis

Severity & Root cause & Trigger condition

Severity Study
Severity of upgrade failures vs non-upgrade failures：

Cassandra Other Systems

Upgrade
failures

Non-upgrade
failures

Upgrade
failures

Non-upgrade
failures

Portion of high
priority bugs

53% 20% 93% 59%

Severity Study

The high severity comes from the symptoms:

MESOS-3834

CASSANDRA-4195
HDFS-5988

Severity Findings

● Upgrade failures have significantly higher priority than regular
failures.

● The majority (67%) of upgrade failures are catastrophic
● Most (70%) upgrade failures have easy-to-observe symptoms

like node crashes or fatal exceptions
● The majority (63%) of upgrade bugs were not caught before

code release

Root Cause Study

Four types:

● Incompatible cross-version interaction(63%)
● Broken upgrade operation(33%)
● Misconfiguration(3%)
● Broken library dependency(2%)

Incompatible cross-version interaction

● Data source:
○ Persistent storage data
○ Network messages

● Incompatibility type:
○ Syntax

■ Serialization library data(Class-like)
■ Enum(Array-like)
■ System-specific data

○ Sematic(e.g. Different meaning of a “Default” setting)
■ The key part is version handling and checking

● Authors provided suggestions and examples

Broken upgrade operation
 Definition: unexpected interaction between the upgrade
operation and specific regular operations of the system

Triggers study
This study is to find out in which circumstances an upgrade failure are
likely to happen, which helps providing opportunities for automated
testing.

Note: The version number is in form of: <Major>.<Minor>.<bug-fix>

Problem: It’s too much to compare all N^2 combinations

How to Trigger Failures
● All of the upgrade failures require no more than 3 nodes to

trigger (Caused by Persistent data or communication)

● Close to 90% of the upgrade failures are deterministic, not
requiring any special timing to trigger (An exception was
mentioned before)

● Half of upgrade bugs can be triggered by stress testing
operations with default configurations.
○ The others need special configurations and operations but

most can be covered by using existing unit tests.

State of Art Testing

The 8 systems(i.e. Cassandra, Mesos,...) studied by the authors has
testing scripts for upgrade operations but still had a majority of
bugs caught after release.

Two Key Limitations:

● They used testing workload designed from scratch instead of
the mature and much larger amount one for stress tests.

● The tests didn’t consider different situations about versions,
configurations and upgrade scenarios.

New Testing And Detecting
Tools

DUPTester & DUPChecker

Distributed system UPgrade Tester(DUPTester)
-to expose upgrade failures through in-house testing

Architecture:

● Pre-loaded system containers with different versions
● A 3-node cluster
● A shared directory to store persistent data for other

containers’ accessing.

DUPTester
Upgrade Scenarios: Full-stop, Rolling, New node joining

Testing workload:

● Leveraging existing stress testing workload.
● For unit testing:

○ Translate them to client side command scripts(python
programs, according to the authors)

○ Test their influence on system states(only for full-stop
upgrade)

DUPTester
Evaluation:

● Tested 3 studied systems(Cassandra, HBase and Kafka)
and 1 unstudied system(Hive)

● The version gap of upgrading are either 1-2 minor versions
or 1 major version.

Result:

● Found 20 previously unknown failures(7 of them are
confirmed by the developers)

● The triggering workloads and configurations are not
covered by existing testing scripts of Cassandra

Distributed system UPgrade Checker(DUPChecker)
-to detect upgrade failures caused by data-syntax incompatibility

through static program analysis

For two types of data:

● Serialization Libraries Data
○ Checker already exists
○ Creates a parser for protocol files to compare the data format of the

same data member from different versions
● Enum Data

○ Checks whether the enum class has member addition or deletion
across two versions.

○ If so, it considers it as a bug, otherwise a vulnerability to future
changes

DUPChecker Results

It found 878 unknown incompatibilities of the first data type.
According to the authors, there is no false positive.

And for the second type, 2 newly found bugs were confirmed and
fixed by the developers and 3 of the 6 new vulnerabilities are
confirmed and fixed.

Future Works

Suggested Research Direction

● Apply new techniques to explore the test space and trigger more
upgrade failures.

● Developed more static analysis techniques to detect incompatibilities
caused by changing file names, changing configurations….

● According to the analysis, applying flexible and efficient serialization
libraries to more data will help eliminate upgrade failures.

Related Works

 Studies on Upgrading Failures

● Liu et al.[1] pointed out that software upgrade is one of the
reasons for incompatible data-formats but didn’t offer
details and corresponding solutions.

● Gunawi et al.[2] found that 16% of cloud service outages
involve hardware or software upgrade without in-depth
analysis.

Studies on Upgrading Failures
● Tudor et al.[3] analyzed 55 upgrade failures from a

e-commerce system, a database system, and Apache web
server focusing on causes like misconfiguration, broken
dependency, and operator error.

● Some studies[4-6] focus on the root cause of distributed
system failures without discussion about upgrade failures.

● The authors are the first to focus on upgrade failures caused by
software defects in distributed systems.

Review

Strong Points:

● Provided in-depth analysis on the upgrading failures including
severity, trigger conditions and root cause which is also
inspiring for future studying.

● Developed powerful tools to test and detect upgrading
failures which are experimentally proven to be more powerful
than existing test scripts.

Weak Points

● Only one root cause are covered by the DUPChecker

● I will be hard for the DUPTester to cover most of the special
circumstances if there are not enough existing test cases.

● And a typo in the article:

References

[1]Haopeng Liu, Shan Lu, Madan Musuvathi, and Suman Nath.
What bugs cause production cloud incidents? In Proceedings of
the Workshop on Hot Topics in Operating Systems, HotOS ’19,
pages 155–162, 2019.

[2]Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto, Agung
Laksono, Anang D. Satria, Jeffry Adityatama, and Kurnia J.
Eliazar. Why does the cloud stop computing?: Lessons from
hundreds of service outages. In Proceedings of the Seventh ACM
Symposium on Cloud Computing, SoCC ’16, pages 1–16, 2016.

[3]Tudor Dumitraş and Priya Narasimhan. Why do upgrades fail
and what can we do about it?: Toward dependable, online
upgrades in enterprise system. In Proceedings of the 10th
ACM/IFIP/USENIX International Conference on Middleware,
Middleware ’09, pages 18:1–18:20, 2009.

[4]Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu
Zhao, Yongle Zhang, Pranay U Jain, and Michael Stumm. Simple
testing can prevent most critical failures: An analysis of production
failures in distributed data-intensive systems. In Proceedings of the
11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’14), pages 249–265, 2014.

 [5]Haryadi S. Gunawi, Mingzhe Hao, Tanakorn
Leesatapornwongsa, Tiratat Patana-anake, Thanh Do, Jeffry
Adityatama, Kurnia J. Eliazar, Agung Laksono, Jeffrey F. Lukman,
Vincentius Martin, and Anang D. Satria. What bugs live in the
cloud? a study of 3000+ issues in cloud systems. In Proceedings of
the ACM Symposium on Cloud Computing, SOCC ’14, pages
7:1–7:14, 2014

[6]A. Rabkin and R.H. Katz. How Hadoop clusters break. Software,
IEEE, 30(4):88–94, 2013

