
Proactive Horizontal Auto-Scaling for
Kubernetes

Rajesh Manedi, Rohit Mohan, Vinay Vasudev

Introduction
● Elasticity is the key property for cloud computing to

become popular.
● Kubernetes is a well known container orchestrator for cloud

deployed applications.
● Kubernetes offers Horizontal and Vertical Pod Autoscaling

Motivation
● Default approach used in kubernetes is reactive HPA
● Scaling is done only after change is observed
● Issue with this approach is over-provisioning and

under-provisioning of resources
● Solution is to move from reactive to proactive auto

scaling.

Related Work
• RPPS: A Novel Resource Prediction and Provisioning Scheme

in Cloud Data Center

• Machine learning-based auto-scaling for containerized
applications

• Fisher: An Efficient Container Load Prediction Model with Deep
Neural Network in Clouds

Proposed Approach

Metrics:
• System Level Metrics : Average CPU and Memory Utilization
• Application Level Metric : Number of HTTP Requests.

Granularity considered for the metric collection and decision making is 15
seconds.

MultiVariate Time-Series Prediction Models:
• Autoregressive Integrated Moving Average (ARIMA)
• Bidirectional Long-Short Term Memory (Bi-LSTM)
• Gated Recurrent Unit (GRU)

Formula to be used :
DesiredReplicas

mx
 = ceil[CurrentReplicas * (PredictedMetricValue

mx
/DesiredMetricValue

mx
)

mx = {Avg CPU Utilization, Avg Memory Utilization, Number of HTTP Requests}

ConfiguredReplicas = max(DesiredReplicas
mx

)

Proposed Approach

Experiment Setup

● Generate load using Locust with Wikipedia access trace
patterns

● We will use a stateless HTTP server application as the
container

● Container deployed as a service on kubernetes

Evaluation

We will compare the results from the following experiments:
1. Behavior and metrics from the container with no auto

scaling
2. Baseline HPA with CPU and memory utilization, request

rate metrics with appropriate thresholds
3. Custom auto-scaler using the different prediction

models (ARIMA, GRU, Bi-LSTM)

Evaluation metrics

● Root Mean Square Error
● % deviation from the expected replicas

Plan of Work

● Environment setup and data collection - Rohit
● Model training and evaluation - Rajesh
● Custom autoscaler development - Vinay
● Experiments - Team
● Evaluation - Team

References
• Fang, Wei and Lu, ZhiHui and Wu, Jie and Cao, ZhenYin

https://ieeexplore.ieee.org/document/6274197
• Imdoukh, Mahmoud and Ahmad, Imtiaz and Alfailakawi, Mohammad Gh

Alfailakawi
Machine learning-based auto-scaling for containerized applications

• Tang, Xuehai and Liu, Qiuyang and Dong, Yangchen and Han, Jizhong and
Zhang, Zhiyuan

 Fisher: An Efficient Container Load Prediction Model with Deep Neural Network in Clouds

https://ieeexplore.ieee.org/document/6274197

