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Previous lecture

High-level intro and motivation

My focus was/is on connections to classical statistics

I realize that my focus might seem out-dated

Ideas/methods aren’t confined to “old school” problems

imprecise prob is quite common in CS/AI/etc
ongoing work1 on, e.g., deep learning w/ imprecise prob
even I’m pushing in this direction, e.g., conformal prediction2

So, again, there are lots of exciting opportunities

1Check out recent issues of SIPTA/BFAS conference proceedings or IJAR
2Cella & M., links to refs on website
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Today’s lecture

Background on (precise) probability

interpretations
De Finetti’s coherence arguments

Shortcomings, i.e., gaps that imprecision can fill

Imprecise probabilities — capacities

Some basic properties

Coherence, revisited
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Precise probability

I assume you’re familiar with Kolmogorov’s axioms and the
associated probability calculus covered in standard texts

My “review” here will focus on some different aspects

interpretation
rationale, i.e., de Finetti-style coherence

Not typically covered in our probability courses

It’s important for us to understand these details in order to
transition from precise to imprecise
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Precise probability, cont.

Textbooks usually only briefly mention two interpretations:

frequentist
subjective

“Brief” because textbooks are focused on the probability
calculus, which doesn’t depend on the interpretation3

But don’t let the brevity fool you, questions about the
interpretation of probability are important4

These aren’t the only interpretations, and finer categorizations
are possible, these two are just the most familiar

3e.g., even if my P is subjective, I can still simulate realizations from it, do
Monte Carlo approximations based on laws of large numbers, etc.

4Lots of confusion about “frequentist” vs “Bayesian” statistics stems from
misunderstandings about the interpretation of probability
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Precise probability, cont.

Frequentist interpretation defines P(A) as the limiting freq at
which event A occurs in an infinite sequence of trials

This has an air of objectivity, but I don’t think it’s realistic

For situations we’re interested in, often replications don’t
make sense, i.e., there’s no “sequence of trials”

will it rain tomorrow?
will my grant proposal get funded?
is treatment A better than B?

A reluctance to accept the frequentist interpretation doesn’t
make me Bayesian, “anti-frequentist,” etc.
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Precise probability, cont.

Probability does not exist —Bruno de Finetti

In STEM, we’re taught that subjective is a dirty word

But subjectivity is unavoidable, all probabilities are subjective

Doesn’t mean they’re arbitrary or come out of thin air

can be based on sound theory, empirical verification, etc.
can be a consensus about subjective probabilities

The point is that I ultimately have to decide on which
probabilities describe my degrees of belief

Accepting that there’s nothing inherently objective about
precise prob is the first step to appreciating imprecision5

5In fact, the only way to be “objective” is to be imprecise, to simultaneously
consider all of the precise prob’s I could choose from
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Precise probability, cont.

Let’s pause here for a bit of context...

Statistical inference:

observable X , unknown Θ6

model for (X ,Θ) is a subjective, imprecise prob (P,P)
method(X ) answers a particular question about Θ

Inference based on X 7→ method(X ) shouldn’t be wrong
with more than a small (subjective) P-probability, i.e.,

P{method(X ) gives wrong inference about Θ︸ ︷︷ ︸
e.g., (X ,P) 7→ a set estimator that doesn’t contain Θ

} ≤ ε

If my model is sound, then the above warrants inference based
on method(x) in individual X = x cases7

6Upper-case Θ indicates that it’s uncertain, has an imprecise prior
7Cournot’s principle says, roughly, “small probability events don’t happen”
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Precise probability, cont.

A convenient consequence of the “limiting frequency”
definition is that the mathematical form of P(·) drops out
almost automatically

e.g., (finite-)additivity holds by definition

But if P is subjective, then where does the mathematical
structure come from?

De Finetti addressed this problem by introducing ideas of
internal rationality, or coherence

Interprets (subjective) probabilities in a behavioral way, as
prices you’re willing to pay for well-defined gambles
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Precise probability, cont.

De Finetti’s formulation:

for each event A, Pr(A) is the price I believe is fair for a
gamble that pays $1 if A happens and $0 otherwise
I agree to buy or sell tickets8 at my stated prices
may be multiple transactions, net winnings calculated

My pricing scheme is coherent if there is no finite collection of
transactions that guarantees my winnings are < 0, sure loss

If I can be made a sure loser, then there’s something
fundamentally wrong with my pricing scheme

Coherence theorem.

A pricing scheme is coherent iff Pr is a (finitely-additive) probability.

8ticket = promissory note
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Precise probability, cont.

Proof of “only if” (by contraposition9)

Clearly, setting Pr(A) > 1 or Pr(A) < 0 is dumb
Suppose, for some A ∩ B = ∅ and some ε > 0, I set

Pr(A ∪ B) = Pr(A) + Pr(B)− ε < Pr(A) + Pr(B)

Your strategy: buy a ticket for A ∪ B from me, and sell me a
ticket for A and a ticket for B

– after these transactions, I have $(−ε)
– all outcomes (A, B, or Ac ∩ Bc) give us $0 net winnings
– so I’m guaranteed to lose $ε

Proof of “if” ..........

9Prove “If Pr isn’t a finitely-additive prob, then it’s not coherent”
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Precise probability, cont.

This is a pretty compelling argument for choosing our
“subjective probabilities” to be finitely-additive probabilities

Finitely-additive probabilities aren’t very nice though10

Kolmogorov didn’t give strong justification for countable
additivity,11 but this extra structure simplifies things a lot

Advantages:

countably-additive =⇒ finitely-additive ⇐⇒ coherent
do everything with mass/density functions
simple numerical approximations, e.g., Monte Carlo
it’s familiar

10Only one “standard” example of a finitely- but not countably-additive
probability — see homework

11Basically, Kolmogorov said countable additivity is “convenient”
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Towards imprecision

There are some disadvantages to precise probability

Rarely mentioned in probability texts, for obvious reasons

Some shortcomings:

1 precise prob’s can’t model ignorance
2 can’t distinguish aleatory & epistemic uncertainty
3 elicitation of precise prob’s is impossible
4 precise prob’s are afflicted by false confidence

I find these easiest to explain/discuss in the context of
Bayesian statistical inference...
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Towards imprecision, cont.

Too-quick summary of Bayesian statistical inference:

Specify a joint distribution for (X ,Θ) via

(X | Θ = θ) ∼ Pθ and Θ ∼ Π

Use observed X = x to update the prior Π to a posterior
distribution Πx via Bayes’s formula, e.g.,12

πx(θ) =
pθ(x)π(θ)∫
pϑ(x)π(ϑ) dϑ

, θ ∈ T

Inferences about Θ are drawn using relevant features of Πx

Powerful framework, lots of desirable properties

Most common criticism: where does the prior Π come from?

12Assumes Π has a density π; similar formula with mass functions
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Towards imprecision, cont.

Often one is ignorant about Θ a priori

Efron: “Scientists like to work on new problems”

A flat prior models indifference, not ignorance

More sophisticated attempts (e.g., Jeffreys) to develop default
priors for Bayesian inference

These maneuvers ultimately run into trouble because

a precise probability can’t model ignorance!

Proof.....

First, what does ignorant mean?
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Towards imprecision, cont.

Precise prob can’t distinguish aleatory/epistemic uncertainty

I take a diffuse N(0, 100) prior because I’m unsure
you take the same N(0, 100) prior because you’re sure
same posterior, but they can’t possibly mean the same thing

Impossible to elicit precise probabilities:

if the statistician is ignorant about Θ, makes sense to talk to
an expert who isn’t ignorant
elicitation of a prior boils down to asking experts some
questions about what they expect Θ to be
this can give at most a finite collection of constraints, not
enough to determine a precise prior
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Towards imprecision, cont.

False confidence theorem.

Let ΠX be any data-dependent probability on T. For any (α, β),
there exists A ⊂ T such that

A 63 θ and Pθ{ΠX (A) > β} > α.

(Balch, M., & Ferson 2019, arXiv:1706.08565)

Satellite collision example

A = {non-collision}
then ΠX (A) as a random
variable, with a CDF −→
truth: on collision course
different noise levels, σ

False confidence: ΠX (A) is
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Towards imprecision, cont.

Identified some issues with the use of precise prob’s13

Take-away: precise probability doesn’t do all the things we
might want it to do

The false confidence issue is new and of a different nature

risk of systematic errors when using precise prob’s for UQ
practical vs philosophical: false conf demonstrates a sense in
which precise prob “doesn’t work”

So, it’s worth exploring what imprecise prob’s can offer14

13Not the only issues, e.g., a group of individuals generally won’t have a
consensus on their degrees of belief

14For example, Walley’s framework for statistical inference is, roughly,
Bayesian inference with imprecise probabilities
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Imprecise probability

What is an imprecise probability?

Mathematically, a probability is just a function with certain
properties, so let’s just define a more general function

A capacity15 on X is a map γ : 2X → [0, 1] that satisfies

γ(∅) = 0
γ(X) = 1
A ⊆ B implies γ(A) ≤ γ(B), i.e., monotonicity

Clearly, probabilities are capacities, but not conversely

Given γ, define its dual or conjugate as

γ̃(A) = 1− γ(Ac), A ⊆ X

Probabilities are self-conjugate but, in general, γ̃ 6= γ

15First studied by Choquet, 1950s
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Imprecise probability, cont.

A capacity is called super-additive if

γ(A ∪ B) ≥ γ(A) + γ(B), all A ∩ B = ∅

Sub-additive if the inequality is reversed

A capacity is 2-monotone if

γ(A ∪ B) + γ(A ∩ B) ≥ γ(A) + γ(B), all A, B

2-alternating if the inequality is reversed

Clearly, 2-monotone =⇒ super-additive

Simple properties:

if γ is super-additive, then γ(A) ≤ γ̃(A) for all A
if γ is 2-monotone, then γ̃ is 2-alternating
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Imprecise probability, cont.

2-monotone capacities appear in various contexts:

game theory (Shapley)
decision theory (Gilboa & Schmidler16)
robust statistics (Huber & Strassen; Kadane & Wasserman)
...

This is the most basic kind of imprecise probability, for
reasons described below

All the imprecise prob models we consider are 2-monotone

In fact, they have much more regularity,17 2-monotone
capacities are too complex

16Generalizations to the von Neumann & Morganstern theory
17Higher-order monotonicity, etc.
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Imprecise probability, cont.

There’s an obvious issue we need to settle right away

De Finetti: only probabilities are coherent

If we switch to something more general, then we’re at risk of
some internal irrationality, right?

But De Finetti makes a strong assumption, easy to overlook

→ For every gamble, I can precisely specify my fair price and I
commit to buy/sell at that price

A weaker, more realistic assumption:

specify a max price at which I’m willing to buy
specify a min price at which I’m willing to sell

“Lower/upper prices” → 2-monotone capacity and its dual
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Imprecise probability, cont.

Weaker requirement on the gambler creates more flexibility,
an opportunity for other things to be coherent

Now a pricing scheme sets lower and upper prices

Pr = max price to buy Pr = min price to sell

A pricing scheme avoids sure loss18 if there is no finite
collection of transactions that ensures winnings < 0

“No-sure-loss theorem.”

A pricing scheme avoids sure loss if Pr is a 2-monotone capacity and
Pr is its dual

18For precise probabilities, coherence ≡ avoids sure loss; but for imprecise
probabilities, coherence � avoids sure loss
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Imprecise probability, cont.

For a capacity γ, define the credal set

C (γ) : {P : P(A) ≥ γ(A) for all A},

the set of probabilities that dominate γ

Theorem is a consequence of the following two facts:

if γ is 2-monotone, then C (γ) 6= ∅
if C (Pr) 6= ∅, then pricing scheme avoids sure loss

Direct proof of C (γ) 6= ∅:19

constructing P with P ≥ γ
homework

19e.g., Chateauneuf & Jaffray, 1989
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Next lecture

Random sets

Properties of the induced capacities

Examples

...
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