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Previous lecture

High-level intro and motivation
My focus was/is on connections to classical statistics
| realize that my focus might seem out-dated

Ideas/methods aren’t confined to “old school” problems

m imprecise prob is quite common in CS/Al/etc
m ongoing work! on, e.g., deep learning w/ imprecise prob
m even I'm pushing in this direction, e.g., conformal prediction?

m So, again, there are lots of exciting opportunities

!Check out recent issues of SIPTA/BFAS conference proceedings or IJAR
2Cella & M., links to refs on website



Today's lecture

m Background on (precise) probability
m Interpretations
m De Finetti's coherence arguments
m Shortcomings, i.e., gaps that imprecision can fill
m Imprecise probabilities — capacities
m Some basic properties
m Coherence, revisited



Precise probability

m | assume you're familiar with Kolmogorov’'s axioms and the
associated probability calculus covered in standard texts
m My “review” here will focus on some different aspects

m interpretation
m rationale, i.e., de Finetti-style coherence

Not typically covered in our probability courses

It's important for us to understand these details in order to
transition from precise to imprecise



Precise probability, cont.

m Textbooks usually only briefly mention two interpretations:
m frequentist
m subjective
m "Brief” because textbooks are focused on the probability
calculus, which doesn’t depend on the interpretation®
m But don't let the brevity fool you, questions about the
interpretation of probability are important*
m These aren't the only interpretations, and finer categorizations
are possible, these two are just the most familiar

3e.g., even if my P is subjective, | can still simulate realizations from it, do
Monte Carlo approximations based on laws of large numbers, etc.

*Lots of confusion about “frequentist” vs “Bayesian” statistics stems from
misunderstandings about the interpretation of probability



Precise probability, cont.

m Frequentist interpretation defines P(A) as the limiting freq at
which event A occurs in an infinite sequence of trials

m This has an air of objectivity, but | don't think it's realistic
m For situations we're interested in, often replications don’t
make sense, i.e., there's no “sequence of trials”
m will it rain tomorrow?
m will my grant proposal get funded?
m is treatment A better than B?
m A reluctance to accept the frequentist interpretation doesn't
make me Bayesian, “anti-frequentist,” etc.



Precise probability, cont.

Probability does not exist —Bruno de Finetti

In STEM, we're taught that subjective is a dirty word

But subjectivity is unavoidable, all probabilities are subjective

Doesn’t mean they're arbitrary or come out of thin air
m can be based on sound theory, empirical verification, etc.
m can be a consensus about subjective probabilities
m The point is that | ultimately have to decide on which
probabilities describe my degrees of belief

Accepting that there's nothing inherently objective about
precise prob is the first step to appreciating imprecision®

®In fact, the only way to be “objective” is to be imprecise, to simultaneously
consider all of the precise prob's | could choose from



Precise probability, cont.

m Let's pause here for a bit of context...
m Statistical inference:

m observable X, unknown ©° B
m model for (X, ©) is a subjective, imprecise prob (P, P)
m METHOD(X) answers a particular question about ©

m Inference based on X +— METHOD(X) shouldn’t be wrong
with more than a small (subjective) P-probability, i.e.,

P{METHOD(X) gives wrong inference about ©} < ¢

e.g., (X,P) > a set estimator that doesn't contain ©

m If my model is sound, then the above warrants inference based
on METHOD(x) in individual X = x cases’

®Upper-case © indicates that it's uncertain, has an imprecise prior
"Cournot’s principle says, roughly, “small probability events don't happen”



Precise probability, cont.

m A convenient consequence of the “limiting frequency”
definition is that the mathematical form of P(-) drops out
almost automatically

m e.g., (finite-)additivity holds by definition

m But if P is subjective, then where does the mathematical
structure come from?

m De Finetti addressed this problem by introducing ideas of
internal rationality, or coherence

m Interprets (subjective) probabilities in a behavioral way, as
prices you're willing to pay for well-defined gambles



Precise probability, cont.

m De Finetti's formulation:
m for each event A, Pr(A) is the price | believe is fair for a
gamble that pays $1 if A happens and $0 otherwise
m | agree to buy or sell tickets® at my stated prices
® may be multiple transactions, net winnings calculated
m My pricing scheme is coherent if there is no finite collection of
transactions that guarantees my winnings are < 0, sure loss

m If | can be made a sure loser, then there's something
fundamentally wrong with my pricing scheme

Coherence theorem.

A pricing scheme is coherent iff Pr is a (finitely-additive) probability.

8ticket = promissory note
10/25



Precise probability, cont.

m Proof of “only if” (by contraposition®)

m Clearly, setting Pr(A) > 1 or Pr(A) < 0 is dumb
m Suppose, for some AN B = & and some ¢ > 0, | set

Pr(AU B) = Pr(A) + Pr(B) — e < Pr(A) + Pr(B)
m Your strategy: buy a ticket for AU B from me, and sell me a

ticket for A and a ticket for B

— after these transactions, | have $(—¢)
— all outcomes (A, B, or A°N B¢) give us $0 net winnings
— so I'm guaranteed to lose $¢

m Proof of “if" ..........

°Prove “If Prisn't a finitely-additive prob, then it's not coherent”
11/25



Precise probability, cont.

m This is a pretty compelling argument for choosing our
“subjective probabilities” to be finitely-additive probabilities

m Finitely-additive probabilities aren't very nice though'?

m Kolmogorov didn't give strong justification for countable
additivity,!* but this extra structure simplifies things a lot
m Advantages:

m countably-additive = finitely-additive <= coherent
m do everything with mass/density functions

m simple numerical approximations, e.g., Monte Carlo

m it's familiar

°Qnly one “standard” example of a finitely- but not countably-additive
probability — see homework

" Basically, Kolmogorov said countable additivity is “convenient”
12 /25



Towards imprecision

m There are some disadvantages to precise probability

m Rarely mentioned in probability texts, for obvious reasons
m Some shortcomings:
precise prob’s can't model ignorance
can't distinguish aleatory & epistemic uncertainty
elicitation of precise prob's is impossible
precise prob's are afflicted by false confidence

m | find these easiest to explain/discuss in the context of
Bayesian statistical inference...

13 /25



Towards imprecision, cont.

m Too-quick summary of Bayesian statistical inference:
m Specify a joint distribution for (X, ©) via

(X]1©=60)~Py and ©~TI

m Use observed X = x to update the prior [1 to a posterior
distribution M, via Bayes's formula, e.g.,1?

 pl)n(e)
[ po(x) m(9) d9’

m Inferences about © are drawn using relevant features of I,

mx(6) 0eT

m Powerful framework, lots of desirable properties

m Most common criticism: where does the prior [l come from?

12 Assumes MM has a density 7; similar formula with mass functions
14 /25



Towards imprecision, cont.

Often one is ignorant about © a priori
Efron: “Scientists like to work on new problems”
A flat prior models indifference, not ignorance

More sophisticated attempts (e.g., Jeffreys) to develop default
priors for Bayesian inference

These maneuvers ultimately run into trouble because

a precise probability can’t model ignorance!
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First, what does ignorant mean?

15/25



Towards imprecision, cont.

m Precise prob can't distinguish aleatory/epistemic uncertainty
m | take a diffuse N(0, 100) prior because I'm unsure
m you take the same N(0, 100) prior because you're sure
® same posterior, but they can't possibly mean the same thing

m Impossible to elicit precise probabilities:
m if the statistician is ignorant about ©, makes sense to talk to
an expert who isn't ignorant
m elicitation of a prior boils down to asking experts some
questions about what they expect © to be
m this can give at most a finite collection of constraints, not
enough to determine a precise prior

16 /25



Towards imprecision, cont.

False confidence theorem.

Let Mx be any data-dependent probability on T. For any (a, ),
there exists A C T such that

AZ0 and Py{lx(A) > [} > a.

(Balch, M., & Ferson 2019, arXiv:1706.08565)

m Satellite collision example
m A = {non-collision}
m then MNx(A) as a random
variable, with a CDF —
m truth: on collision course
m different noise levels, o

CDF

m False confidence: Mx(A) is
almost always large!

TIx(A)

17 /25



Towards imprecision, cont.

Identified some issues with the use of precise prob’s'3

Take-away: precise probability doesn't do all the things we
might want it to do

m The false confidence issue is new and of a different nature
m risk of systematic errors when using precise prob’s for UQ
m practical vs philosophical: false conf demonstrates a sense in
which precise prob “doesn’t work”

So, it's worth exploring what imprecise prob’s can offerl*

13Not the only issues, e.g., a group of individuals generally won’t have a
consensus on their degrees of belief
1For example, Walley's framework for statistical inference is, roughly,

Bayesian inference with imprecise probabilities
18 /25



Imprecise probability

What is an imprecise probability?

m Mathematically, a probability is just a function with certain
properties, so let's just define a more general function
A capacity'® on X is a map v : 2% — [0, 1] that satisfies
my(2)=0
= y(X)=1
m A C B implies y(A) < (B), i.e., monotonicity

Clearly, probabilities are capacities, but not conversely

Given #, define its dual or conjugate as
Y(A)=1-1(A%), ACX

Probabilities are self-conjugate but, in general, 4 # ~

®First studied by Choquet, 1950s
19/25



Imprecise probability, cont.

A capacity is called super-additive if

Y(AUB)>~(A)+7(B), al ANB=o

Sub-additive if the inequality is reversed

A capacity is 2-monotone if

Y(AUB)+~v(ANB) >~(A)+~(B), allA B

2-alternating if the inequality is reversed

Clearly, 2-monotone = super-additive

Simple properties:
m if v is super-additive, then vy(A) < (A) for all A
m if 7 is 2-monotone, then % is 2-alternating

20 /25



Imprecise probability, cont.

m 2-monotone capacities appear in various contexts:

game theory (Shapley)

m decision theory (Gilboa & Schmidler!®)

m robust statistics (Huber & Strassen; Kadane & Wasserman)
| |

m This is the most basic kind of imprecise probability, for
reasons described below

m All the imprecise prob models we consider are 2-monotone

m In fact, they have much more regularity,!” 2-monotone
capacities are too complex

18 Generalizations to the von Neumann & Morganstern theory
"Higher-order monotonicity, etc.
21 /25



Imprecise probability, cont.

There's an obvious issue we need to settle right away

De Finetti: only probabilities are coherent

If we switch to something more general, then we're at risk of
some internal irrationality, right?
m But De Finetti makes a strong assumption, easy to overlook

— For every gamble, | can precisely specify my fair price and |
commit to buy/sell at that price

m A weaker, more realistic assumption:

m specify a max price at which I'm willing to buy
m specify a min price at which I'm willing to sell

“Lower/upper prices’ — 2-monotone capacity and its dual

22 /25



Imprecise probability, cont.

m Weaker requirement on the gambler creates more flexibility,
an opportunity for other things to be coherent

m Now a pricing scheme sets lower and upper prices
Pr = max price to buy Pr = min price to sell

m A pricing scheme avoids sure loss*® if there is no finite
collection of transactions that ensures winnings < 0

“No-sure-loss theorem.”
A pricing scheme avoids sure loss if Pr is a 2-monotone capacity and
Pr is its dual

BFor precise probabilities, coherence = avoids sure loss; but for imprecise

probabilities, coherence > avoids sure loss
23 /25



Imprecise probability, cont.

m For a capacity v, define the credal set
€(7) : {P : P(A) > v(A) for all A},

the set of probabilities that dominate ~y
m Theorem is a consequence of the following two facts:
m if 7 is 2-monotone, then € () # &
m if €(Pr) # @, then pricing scheme avoids sure loss
m Direct proof of €(v) # @:1

m constructing P with P >~
m homework

Ye.g., Chateauneuf & Jaffray, 1989

24 /25



Next lecture

Random sets
Properties of the induced capacities

Examples

25 /25



