
ST790 – Homework 1 Due: 11/22/2022

These exercises are meant to supplement the lectures by providing some further examples
to illustrate the general ideas and theory. Students (individually or in pairs) should
attempt to solve all the assigned problems. The solutions will be collected at the end of
the semester (the day before Thanksgiving), so you may work on these at your own pace.
But don’t wait too long to get started! If you have questions, feel free to ask.

1. Justify the claim made in the Week 01a lecture (slide 19) that the most diffuse
probability distribution in the credal set C (Πx) is Π?

x = N(x, 1). Your justification
doesn’t have to be a formal proof, just reason it out from the fact that Πx ∈ C (Πx)
if and only if Πx(A) ≤ Πx(A) for all A ⊆ R.

Hint: For sets A of the form A = (−∞, x− a]∪ [x+ a,∞), with a > 0, the equality
is attained, but for any other sets A, it’s a strict inequality.

2. For a fairly general class of continuous, scalar parameter problems, there is a simple
formula for Fisher’s fiducial distribution.1 Suppose the model for data X ∈ R has
an absolutely continuous distribution function Fθ, for θ ∈ R. Then the fiducial
distribution Ψx for θ, given X = x, has a density function given by

ψx(θ) =
∣∣∣∂Fθ(x)

∂θ

∣∣∣, θ ∈ R.

(a) Suppose that X is an exponential random variable with rate parameter θ > 0,
so that Fθ(x) = 1− e−θx, for x > 0. Use the formula above to find the fiducial
distribution Ψx of θ, given X = x. Verify that ψx(θ) is, indeed, a density
function in θ for fixed x.

(b) Define the p-value function πx(θ) = Pθ{| log(θX)| ≥ | log(θx)|}. Draw a plot
of this function of θ when x = 0.25.

Hint: You can simplify the p-value by setting g(z) = Pθ{| log(θX)| > z} first,
which doesn’t depend on θ (why?), and then writing πx(θ) = g(| log(θx)|).

(c) As in the Week 01a lecture, define the corresponding upper probability as

Πx(A) = sup
θ∈A

πx(θ), A ⊆ [0,∞).

Argue, like in the previous problem (numerical justification is fine), that the
fiducial distribution Ψx is in the credal set C (Πx) determined by Πx.

Hint: Equality Ψx(A) = Πx(A) is attained for sets A of the form A = [0, a/x]∪
[1/ax,∞), for a ∈ [0, 1], but strict inequality for all other A.

3. (From Section 3.3 in Nguyen’s An Introduction to Random Sets, 2006.) Consider an
box that 30 red balls and 60 other balls, some of which are white and the others are
black. Let X denote the color of a ball chosen at random from this box. Obviously,
this isn’t enough information to determine the distribution of X; all you can say is
that X has one of the mass functions fk, for k = 0, 1, . . . , 60, where

1See Section 3 in Zabell’s “R.A. Fisher and the fiducial argument,” Statistical Science, 1992.
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x red black white
fk(x) 30/90 k/90 (60− k)/90

(a) Say a ball is “dark” if it’s not white. What’s the lower and upper probability
of drawing a dark ball?

(b) Sketch the probability simplex as displayed in the Week 01a lecture and, in it,
the corresponding set of precise probabilities. Is this a credal set?

(c) Suppose that there’s a payoff depending on the color of the ball that’s drawn.
In particular, the player wins $30 for a red ball, $20 for a black ball, and $15
for a white ball. Find the lower and upper expected winnings, and explain
your rationale.

4. Here’s the standard example of a probability that’s finitely additive but not count-
ably additive. Consider the universe Ω consisting of the natural numbers (or any
other countably infinite set) and, for any subset A ⊆ Ω, define the probability

P(A) =

{
0 if A is finite

1 if A is co-finite (complement of a finite set).

(a) Show that P is finitely additive in the sense that

P
( K⋃
k=1

Ak

)
=

K∑
k=1

P(Ak) for all K <∞ and all disjoint A1, . . . , AK ,

but not countably additive, i.e.,

P
( ∞⋃
k=1

Ak

)
6=
∞∑
k=1

P(Ak), for all disjoint A1, A2, . . ..

(b) Argue that P does not have a mass function. That is, argue that there is no
function p such that P(A) =

∑
ω∈A p(ω) for all A ⊆ Ω.

5. Let γ be a capacity and γ̃ its dual/conjugate. Consider the claim

If γ is super-additive, then γ̃ is sub-additive.

Show, by constructing a counter-example, that this claim is false.

6. On the three-state universe {x1, x2, x3}, define the lower probability P

P(x1) = 0.45, P(x2) = 0.15, P(x3) = 0.30,

and corresponding upper probability P

P(x1) = 0.55, P(x2) = 0.20, P(x3) = 0.40.
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(a) Recall that P is 2-monotone if

P(A ∪B) + P(A ∩B) ≥ P(A) + P(B), for all A,B.

Check the above inequality for as many pairs of subsets (A,B) as it takes to
convince yourself that P is 2-monotone.

Hints: First, recall that (P,P) are dual; second, while there are totally 64 pairs
of subsets, but you don’t have to check them all: the inequality is an obvious
equality if A = B and, moreover, it holds for (A,B) if and only if it holds for
(B,A), so there is some structure.

(b) Sketch the probability simplex P like in the Week 01a lecture and, on it, plot
the credal set P0 ⊂P determined by (P,P). That is, sketch the region

P0 = {(p1, p2, p3) ∈P : p1 ∈ [0.45, 0.55], p2 ∈ [0.15, 0.20], p3 ∈ [0.30, 0.40]}.

Hint: It may help to sketch the simplex in Barycentric coordinates.2

(c) It’s clear from the sketch in Part (b) that P0 is non-empty. But if the space
was more complex, then drawing the sketch wouldn’t be possible. To know
P0, it’s enough to find the vertices—there are six of them in this case. Fortu-
nately, there is a general way to identify the extreme points of the credal set
determined by a 2-monotone capacity.

Suppose the space is {x1, . . . , xK}, and let σ denote a permutation of the
indices {1, . . . , K}. For a given σ, define the probability vector

p
(σ)
k = P({xσ(1), . . . , xσ(k)})− P({xσ(1), . . . , xσ(k−1)}), k = 1, . . . , K.

Then Chateauneuf & Jaffray, Mathematical Social Sciences, 1989, showed that
the vectors {p(σ) : all permutations σ} is the set of extreme points. Pick any
one of the 3! = 6 permutations σ, find the corresponding p(σ) vector, and
identify the the corresponding vertex of the credal set you sketched in Part (b)
above; you can do more than one σ if you like.

7. In the Week 01a lecture, from a p-value function πx(ϑ) for testing a point null
hypothesis H0 : θ = ϑ, a p-value function for general hypotheses A was defined as

Πx(A) = sup
ϑ∈A

πx(ϑ).

If it helps, you can focus specifically on the scalar normal mean case.

(a) Show that Πx is monotone and sub-additive.

(b) Show that Πx is 2-alternating or, equivalently, that its dual Πx is 2-monotone.

(c) P-values are often criticized for (allegedly) lacking the mathematical niceties
that probabilities possess. Parts (a) and (b) above, however, showed that p-
values actually do have mathematical structure,3 it’s just different from prob-
abilities. So there must be some confusion here somewhere...

2e.g., https://en.wikipedia.org/wiki/Barycentric_coordinate_system
3In fact, p-values as defined above are possibility measures, so they have even nicer properties than

2-alternating capacities.
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One such criticism is in Mark Schervish’s “P-values: What they are and what
they are not,” The American Statistician, 1996.4 He argues that p-values are
“incoherent” and not “measures of support” by constructing an example where
monotonicity of the p-value function is violated. This is incompatible with the
conclusion of Part (a) above, so something weird is going on. Can you spot
how Schervish’s p-value construction differs from that above?

4e.g., https://www.apps.stat.vt.edu/leman/VTCourses/schervish-pvals.pdf
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