ST790 — Fall 2022 Imprecise-Probabilistic Foundations of Statistics

Ryan Martin North Carolina State University www4.stat.ncsu.edu/~rmartin

Week 02a

- Random sets: definition and examples
- Distribution of random sets
- Properties of induced capacity
 - non-additive
 - **2** and even ∞ -monotone/alternating
 - (semi-)continuity
- More examples

.....

- A *random set* is exactly what the name suggests:
 - it's a *set-valued* random variable,
 - or a random variable whose realizations are sets
- Not uncommon:
 - confidence regions
 - survey sampling
 - censored/missing/coarse data
 - technically, every continuous data application
- Question: How to describe the distribution of a random set?
- This random set distribution induces a capacity
- Special kind of imprecise probability
 - interesting in their own right
 - also a good entry point to IP

Sample surveys:

- sampling plan designed to get a "representative sample"
- output is a set of units

Coarse data:

- $\mathcal{X} = \{X\}$, exact observation
- $\mathcal{X} = (-\infty, \infty)$, missing observation
- $\mathcal{X} = [L, U]$, interval censoring

Artificial intelligence:

- humans process information without exact observations
- e.g., {my friend is kinda far away}
- data is basically a set of distances

¹More-or-less from Nguyen's book

- 1. Random singleton. If X is a random variable or vector, then $\mathcal{X} = \{X\}$ is a random set, a random singleton
- 2. Random interval. If X is a random vector and $a(\cdot) \le b(\cdot)$ are functions, then $\mathcal{X} = [a(X), b(X)]$ is a random interval

• one-sided:
$$(-\infty, b(X)]$$
 or $[a(X), \infty)$

- random center, fixed width: $[c(X) \alpha, c(X) + \beta]$
- fixed center, random width: $c \pm |d(X) c|$
- 3. Random ball. If X is a random vector and R > 0 is a random variable, then $\mathcal{X} = \{x : ||x X|| \le R\}$ is a random ball.

²From Molchanov's book

- 4. Random triangle. If X_1 , X_2 , and X_3 are random vectors, then $\mathcal{X} = \text{convex hull of } \{X_1, X_2, X_3\}$ is a random triangle
- 5. Random level sets. If $\{X_t : t \in \mathbb{T}\}$ is a real-valued process w/ continuous sample paths, then, for each $x \in \mathbb{R}$,
 - $\mathcal{X} = \{t : X_t = x\}$ is a random level set
 - $\mathcal{X} = \{t : X_t \ge x\}$ is a random upper level set

Formal definition

- Probability space $(\Omega, \mathcal{F}, \mathsf{P})$, where \mathcal{F} is a σ -algebra
- \mathcal{F} contains events, subsets of outcomes we can "witness"³
- A random variable $X : \Omega \to \mathbb{R}$ is a measurable function, i.e.,

 $\{\omega: X(\omega) \le \alpha\} \in \mathcal{F}, \text{ for all } \alpha \in \mathbb{R}$

Same idea for random sets

• $\mathcal{X} : \Omega \to 2^{\mathbb{X}}$ is a random set if

 $\{\omega: \mathcal{X}(\omega) \cap K \neq \varnothing\} \in \mathcal{F}, \quad \text{for all compact } K \subseteq \mathbb{X}$

That is, we can witness if a random set X intersects with all compact sets K in its range

Implies relevant functionals $\phi(\mathcal{X})$ are random variables

 $^{{}^3\}mathcal{F}$ is *huge*, but generally a sub-collection of the power set 2^Ω

Examples, cont.

2. If X = [a(X), b(X)], then

 $\mathcal{X} \cap K \neq \varnothing \iff a(X) \leq \sup K \text{ or } b(X) \geq \inf K$

So, if *a* and *b* are measurable, then \mathcal{X} is a random set 5. If $\mathcal{X} = \{t : X_t \ge x\}$ for fixed *x*, then

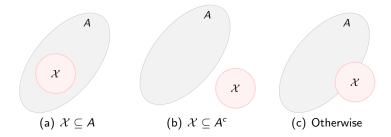
$$\mathcal{X} \cap \mathcal{K} \neq \varnothing \iff \sup_{t \in \mathcal{K}} X_t \ge x$$

If $t \mapsto X_t(\omega)$ is continuous, then $\omega \mapsto \sup_{t \in K} X_t(\omega)$ is measurable, hence so is the right-most event above

Take-away point: measurability of \mathcal{X} typically boils down to simpler or more familiar questions about its components

Distribution of a random set

- Random variables: distribution function $x \mapsto P(X \le x)$
- Similar idea for random sets: $A \mapsto P(\mathcal{X} \subseteq A)$
- But the above functional is not a measure!
- $\mathsf{P}(\mathcal{X} \subseteq A) + \mathsf{P}(\mathcal{X} \subseteq A^c) \le 1^4$



⁴Strict inequality for some A unless \mathcal{X} is a random singleton

In random set literature, the *capacity* associated with a random set X is usually taken to be

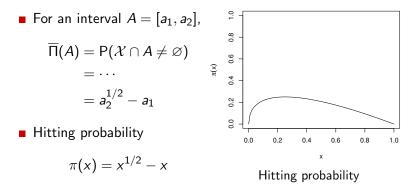
$$\overline{\Pi}(A) = \mathsf{P}(\mathcal{X} \cap A \neq \varnothing), \quad A \subseteq \mathbb{X}$$

- The dual $\underline{\Pi}(A) = \mathsf{P}(\mathcal{X} \subseteq A)$ is also a capacity
- Technical note:
 - previously, " $\mathcal{X} \cap K \neq \varnothing$ " measurable only for *compact* K
 - but here we consider all A, not just compacts
 - we're dealing with the capacity's extension⁵ to $2^{\mathbb{X}}$
- *Hitting probability* is a special case where A is a singleton:

$$\pi(x) = \mathsf{P}(\mathcal{X} \ni x), \quad x \in \mathbb{X}$$

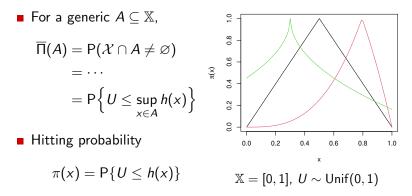
⁵Theorem 1.12 in Molchanov's book. Compare this to how Lebesgue measure is initially defined for intervals and then "extended" to Borel sets

Example. $\mathcal{X} = [X^2, X]$ and $X \sim \text{Unif}(0, 1)$



Capacities, cont.

*Example.*⁶ $\mathcal{X} = \{x \in \mathbb{X} : h(x) \ge U\}$, where is an $h : \mathbb{X} \to [0, 1]$ upper semi-continuous⁷ function, and U is a RV



⁶Random upper level set

⁷lim sup_{$x_n \to x$} $h(x_n) \le h(x)$: " $h(x) \ge u$ for some $x \in A$ iff sup_{$x \in A$} $h(x) \ge u$ "

- First basic property: Π is 2-alternating⁸
- So, safe from a De Finetti-style sure loss criticism
- Actually, Π satisfies even stronger properties:
 - $\overline{\Pi}$ is ∞ -monotone
 - Π is upper semi-continuous⁹
- Very regular class of capacities
- *Choquet's theorem.* The only capacities that satisfy the above properties are those corresponding to random sets

⁹that is, $\overline{\Pi}(K_n) \downarrow \overline{\Pi}(K)$ for compact $K_n \downarrow K$

⁸equivalently, Π is 2-monotone

- More on random sets & capacities
- Examples
- Choquet's theorem
- Maxitivity
- **.**..