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This lecture

Random sets: definition and examples

Distribution of random sets

Properties of induced capacity

non-additive
2- and even ∞-monotone/alternating
(semi-)continuity

More examples

.....
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Random sets

A random set is exactly what the name suggests:

it’s a set-valued random variable,
or a random variable whose realizations are sets

Not uncommon:

confidence regions
survey sampling
censored/missing/coarse data
technically, every continuous data application

Question: How to describe the distribution of a random set?

This random set distribution induces a capacity

Special kind of imprecise probability

interesting in their own right
also a good entry point to IP
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Applications1

Sample surveys:

sampling plan designed to get a “representative sample”
output is a set of units

Coarse data:

X = {X}, exact observation
X = (−∞,∞), missing observation
X = [L,U], interval censoring

Artificial intelligence:

humans process information without exact observations
e.g., {my friend is kinda far away}
data is basically a set of distances

1More-or-less from Nguyen’s book
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Examples2

1. Random singleton. If X is a random variable or vector, then
X = {X} is a random set, a random singleton

2. Random interval. If X is a random vector and a(·) ≤ b(·) are
functions, then X = [a(X ), b(X )] is a random interval

one-sided: (−∞, b(X )] or [a(X ),∞)
random center, fixed width: [c(X )− α, c(X ) + β]
fixed center, random width: c ± |d(X )− c |

3. Random ball. If X is a random vector and R > 0 is a random
variable, then X = {x : ‖x − X‖ ≤ R} is a random ball.

2From Molchanov’s book
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Examples, cont.

4. Random triangle. If X1, X2, and X3 are random vectors, then
X = convex hull of {X1,X2,X3} is a random triangle

5. Random level sets. If {Xt : t ∈ T} is a real-valued process w/
continuous sample paths, then, for each x ∈ R,

X = {t : Xt = x} is a random level set
X = {t : Xt ≥ x} is a random upper level set
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Formal definition

Probability space (Ω,F ,P), where F is a σ-algebra

F contains events, subsets of outcomes we can “witness”3

A random variable X : Ω→ R is a measurable function, i.e.,

{ω : X (ω) ≤ α} ∈ F , for all α ∈ R

Same idea for random sets

X : Ω→ 2X is a random set if

{ω : X (ω) ∩ K 6= ∅} ∈ F , for all compact K ⊆ X

That is, we can witness if a random set X intersects with all
compact sets K in its range

Implies relevant functionals φ(X ) are random variables

3F is huge, but generally a sub-collection of the power set 2Ω
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Examples, cont.

2. If X = [a(X ), b(X )], then

X ∩ K 6= ∅ ⇐⇒ a(X ) ≤ supK or b(X ) ≥ inf K

So, if a and b are measurable, then X is a random set

5. If X = {t : Xt ≥ x} for fixed x , then

X ∩ K 6= ∅ ⇐⇒ sup
t∈K

Xt ≥ x

If t 7→ Xt(ω) is continuous, then ω 7→ supt∈K Xt(ω) is
measurable, hence so is the right-most event above

Take-away point: measurability of X typically boils down to

simpler or more familiar questions about its components

8 / 14



Distribution of a random set

Random variables: distribution function x 7→ P(X ≤ x)

Similar idea for random sets: A 7→ P(X ⊆ A)

But the above functional is not a measure!

P(X ⊆ A) + P(X ⊆ Ac) ≤ 14

A

X

(a) X ⊆ A

A

X

(b) X ⊆ Ac

A

X

(c) Otherwise

4Strict inequality for some A unless X is a random singleton
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Capacities

In random set literature, the capacity associated with a
random set X is usually taken to be

Π(A) = P(X ∩ A 6= ∅), A ⊆ X

The dual Π(A) = P(X ⊆ A) is also a capacity

Technical note:

previously, “X ∩ K 6= ∅” measurable only for compact K
but here we consider all A, not just compacts
we’re dealing with the capacity’s extension5 to 2X

Hitting probability is a special case where A is a singleton:

π(x) = P(X 3 x), x ∈ X

5Theorem 1.12 in Molchanov’s book. Compare this to how Lebesgue
measure is initially defined for intervals and then “extended” to Borel sets
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Capacities, cont.

Example. X = [X 2,X ] and X ∼ Unif(0, 1)

For an interval A = [a1, a2],

Π(A) = P(X ∩ A 6= ∅)

= · · ·

= a
1/2
2 − a1

Hitting probability

π(x) = x1/2 − x
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Capacities, cont.

Example.6 X = {x ∈ X : h(x) ≥ U}, where is an h : X→ [0, 1]
upper semi-continuous7 function, and U is a RV

For a generic A ⊆ X,

Π(A) = P(X ∩ A 6= ∅)

= · · ·

= P
{
U ≤ sup

x∈A
h(x)

}
Hitting probability

π(x) = P{U ≤ h(x)}
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X = [0, 1], U ∼ Unif(0, 1)

6Random upper level set
7lim supxn→x h(xn) ≤ h(x): “h(x) ≥ u for some x ∈ A iff supx∈A h(x) ≥ u”
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Capacities, cont.

First basic property: Π is 2-alternating8

So, safe from a De Finetti-style sure loss criticism

Actually, Π satisfies even stronger properties:

Π is ∞-monotone
Π is upper semi-continuous9

Very regular class of capacities

Choquet’s theorem. The only capacities that satisfy the above
properties are those corresponding to random sets

8equivalently, Π is 2-monotone
9that is, Π(Kn) ↓ Π(K) for compact Kn ↓ K
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Next lecture

More on random sets & capacities

Examples

Choquet’s theorem

Maxitivity

...
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