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This lecture

More on random sets & capacities

Higher-order monotonicity

Choquet’s theorem

Finite X case

Maxitivity

...
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Random sets

For a random set X on X, the two (dual) capacities are

Π(A) = P(X ⊆ A)

Π(A) = P(X ∩ A 6= ∅), A ⊆ X

Easy to see that these are capacities according to our previous
definition; in particular, monotonicity is clear

Moreover, Π is 2-monotone,1 i.e.,

Π(A ∪ B) ≥ Π(A) + Π(B)− Π(A ∩ B),

and Π is 2-alternating (inequality reversed)

Capacities associated with random sets satisfy more:

Π is ∞-monotone and Π is ∞-alternating
Π is upper semicontinuous

1Homework!
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Properties

ψ : 2X → [0, 1] is K -monotone if, for all A1, . . . ,AK ,

ψ
( K⋃
k=1

Ak

)
≥

∑
∅6=I⊆{1,...,K}

(−1)|I |+1 ψ
(⋂
i∈I

Ai

)

K -alternating if the reverse inequality holds

∞-monotone/alternating if K -monotone/alternating for all K

Note: probabilities are ∞-monotone and ∞-alternating2

Proof that Π is ∞-alternating:

Π
( K⋃
k=1

Ak

)
= P

{ K⋃
k=1

(X ∩ Ak) 6= ∅
}

= P(X ∩ A1 6= ∅ or · · · or X ∩ AK 6= ∅)

= · · ·

2Recall the inclusion–exclusion formula...
4 / 16



Properties, cont.

ψ : 2X → [0, 1] is upper semicontinuous3 (USC) if

Kn ↓ K∞ =⇒ ψ(Kn) ↓ ψ(K∞), n→∞ (compact K ’s)

Countably additive probabilities are upper semicontinuous

Π is upper semicontinuous

En = {ω : X (ω) ∩ Kn 6= ∅}
Kn ↓ K∞ implies En ↓ E∞
upper semicontinuity of P implies P(En) ↓ P(E∞)

Choquet’s theorem.

ψ is ∞-alternating and USC iff there exists a random set X such
that ψ(·) = P(X ∩ · 6= ∅)

3For technical reasons, it’s enough to focus only on compacts
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Properties, cont.

Let’s take a look at the finite case:

X is a finite set
domain 2X of X is finite

This simplifies description of the random set’s dist’n

That is, all we need is the mass function of X ,

f (A) = P(X = A), A ∈ 2X

Then the capacities can be evaluated as

Π(A) = P(X ⊆ A) =
∑

B∈2X:B⊆A

f (B)

Π(A) = P(X ∩ A 6= ∅) =
∑

B∈2X:B∩A=∅

f (B)
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Example

Let X = {a, b, c} and define a random set X with mass function:

A ∅ {a} {b} {c} {a, b} {a, c} {b, c} X
f (A) 0.0 0.1 0.1 0.2 0.3 0.0 0.2 0.1

Get the distribution function by summing, e.g.,

F ({a, c}) = P(X ⊆ {a, c})

=
∑

B:B⊆{a,c}

f (B)

= f (∅) + f ({a}) + f ({c}) + f ({a, c})
= 0.3
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Example, cont.

Repeating this for all the subsets gives the distribution function:

A ∅ {a} {b} {c} {a, b} {a, c} {b, c} X
F (A) 0.0 0.1 0.1 0.2 0.5 0.3 0.5 1.0

Moreover, can calculate the lower/upper prob’s assigned to each
element and visualize the corresponding credal set

A Π(A) Π(A)
{a} 0.1 0.5
{b} 0.1 0.7
{c} 0.2 0.5
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Properties, cont.

Like with random variables, if we know, e.g., P(X ⊆ A) for all
A, then we should be able to recover the mass function

i.e., 1–1 correspondence between mass and dist’n functions

Connection is via Möbius inversion

f (A) =
∑

B∈2X:B⊆A

(−1)|A∩B
c | P(X ⊆ B)

Very general theory behind this (e.g., Nguyen Sec. 4.2)4

Intuition. For a discrete bivariate random variable, how to get
the joint mass function from the joint CDF?

4I’ll walk you through a simple, combinatorial proof in HW
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Example, cont.

Check that we can recover mass function from the distribution
function using the Möbius formula

For example,∑
B:B⊆{a,c}

(−1)2−|B|F (B) = F (∅)− F ({a})− F ({c}) + F ({a, c})

= 0.0− 0.1− 0.2 + 0.3

= 0

= f ({a, c}) X

Similarly for other subsets...
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Maxitivity

A functional ψ : 2X → [0, 1] is called maxitive if

ψ(A ∪ B) = max{ψ(A), ψ(B)}, all A,B

Extends to finite (and arbitrary) unions

Common measures of dimension/complexity5 are maxitive

Maxitivity implies:

monotonicity6 (easy)
2-alternating (pretty easy)
∞-alternating (not as easy...)

Choquet: ψ maxitive + USC =⇒ ψ(·) = P(X ∩ · 6= ∅)

Turns out maxitivity forces a very special structure...

5e.g., packing dimension (Nguyen’s book, p. 81–86)
6So, ψ is a capacity (modulo boundary conditions at ∅, X)
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Example

Define X = {x ∈ X : h(x) ≥ U}, for an upper semicontinuous
function h : X→ [0, 1], and U ∼ Unif(0, 1).

Recall

Π(A) = sup
x∈A

h(x), A ⊆ X

Maxitivity:

Π(A ∪ B) = sup
x∈A∪B

h(x)

= max{sup
x∈A

h(x), sup
x∈B

h(x)}

= max{Π(A),Π(B)}
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Maxitivity, cont.

Fact:7 the only maxitive functionals are of the type above, i.e.,

ψ(A) = sup
x∈A

h(x), A ⊆ X, for some h

So, for X ’s with a maxitive upper prob, the distribution is
completely determined by its hitting probability, i.e.,

P(X ∩ A 6= ∅) ≡ sup
x∈A

P(X 3 x)︸ ︷︷ ︸
hitting prob

, A ⊆ X

Remarks:

compare to mass/density function in ordinary probability
recall my previous comment about sup’s in p-values

7Molchanov’s Proposition 1.16 (2005 version)
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Random sets in statistical inference

Dempster’s framework8 from the 1960s, a generalization of
both fiducial & Bayes, was based on random sets

Basic idea:

statistical model: X = a(θ,U)
U ∼ PU is an auxiliary variable, a “random seed”

For given (x , u), let Tx(u) = {θ ∈ T : x = a(θ, u)}
Note: u 7→ Tx(u) is a set-valued map9

Fiducial flip: take the “conditional distribution” of U, given
X = x , to be the marginal PU

Quantify uncertainty about θ, given X = x , via the dist’n of
the (data-dependent) random set Tx(U) with U ∼ PU

8Modern description in Dempster (2008 IJAR)
9Dempster and others sometimes call this a multivalued map
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Random sets in statistical inference, cont.

Dempster’s formulation is subjective; no
concern about statistical properties

Rather than the fiducial flip

quantify uncertainty about U, given
X = x , by a random set U ⊆ U
Tx(U) =

⋃
u∈U Tx(u)

Πx(A) = PU{Tx(U) ∩ A 6= ∅}
For suitable U , inference about θ based
on dist’n of Tx(U) is valid,

sup
θ∈A

PX |θ{ΠX (A) ≤ α} ≤ α

for all α ∈ [0, 1] and all A ⊆ T
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Next lecture

Possibility theory

Examples

Properties

...
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