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This lecture

More on random sets & capacities
Higher-order monotonicity
Choquet’s theorem

Finite X case

Maxitivity
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m For a random set X on X, the two (dual) capacities are

N(A) = P(X C A)

NA)=P(XNA#2), ACX

m Easy to see that these are capacities according to our previous
definition; in particular, monotonicity is clear

1

m Moreover, [1 is 2-monotone,” i.e.,

N(AuB) >MN(A)+0(B)—NO(AnN B),

and M is 2-alternating (inequality reversed)
m Capacities associated with random sets satisfy more:

m [l is oo-monotone and M is co-alternating
m [1is upper semicontinuous

"Homework!
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m ¢ : 2% — [0,1] is K-monotone if, for all Ay, ..., Ak,

K

¢(U Ak) >y (—1)|I|+1¢(ﬂ/\i)
k=1 G#IC{1,...,K} icl
K-alternating if the reverse inequality holds

oo-monotone/alternating if K-monotone/alternating for all K

Note: probabilities are co-monotone and oco-alternating?
Proof that M is co-alternating:

n(LKJ Ak) - P{O(XﬁAk) ” @}

=P(XNA#Dor - or XN Ak # D)

2Recall the inclusion—exclusion formula...
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Properties, cont.

m ¢ : 2% —[0,1] is upper semicontinuous® (USC) if
Knd Ko = Y(Kn) } ¥(Kx), n— oo (compact K's)

m Countably additive probabilities are upper semicontinuous

m I is upper semicontinuous
mE,={w: X(w)NK,# 2}
m K, | Ky implies E, | E
m upper semicontinuity of P implies P(E,) | P(Ex)

Choquet's theorem.

1 is oo-alternating and USC iff there exists a random set X such
that ¥(-) = P(X' N - # @)

3For technical reasons, it's enough to focus only on compacts
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Properties, cont.

m Let's take a look at the finite case:

m X is a finite set
m domain 2% of X is finite

m This simplifies description of the random set's dist'n

m That is, all we need is the mass function of X,
f(A)=P(X =A), Ae2®
m Then the capacities can be evaluated as

O(A)=P(XcA)= > £(B)

Be2X:BCA
NA)=P(XNA£2)= >  f(B)
Be2X:BNA=g
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Let X = {a, b, c} and define a random set X" with mass function:

A |2 Hap {b} {c} {ab} {a c} {b,c} X
f(A) |00 01 01 02 03 02 0.1

Get the distribution function by summing, e.g.,

F({a,c}) = P(X¥ C{a,c})
= Y f(B)

B:BC{a,c}

= (@) +f({a}) + f({c}) + f({a, c})
=0.3
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Example, cont.

Repeating this for all the subsets gives the distribution function:

F(A)

o Ha} {b} {c} {ab} {a c} {bc} X
00 01 01 02 05 05 1.0

Moreover, can calculate the lower/upper prob’s assigned to each
element and visualize the corresponding credal set

h
A [ O(A) Ti(A) /\
7 01 05 < )
(b} | 01 07 /
{c}| 02 05 / 7
e
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Properties, cont.

m Like with random variables, if we know, e.g., P(X C A) for all
A, then we should be able to recover the mass function

i.e., 1-1 correspondence between mass and dist'n functions

Connection is via Mébius inversion

A=Y (n"¥lpca)
Be2X:BCA

Very general theory behind this (e.g., Nguyen Sec. 4.2)*

Intuition. For a discrete bivariate random variable, how to get
the joint mass function from the joint CDF?

*1'll walk you through a simple, combinatorial proof in HW
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Example, cont.

m Check that we can recover mass function from the distribution
function using the Mdbius formula

m For example,

Y (CV)*EIR(B) = F(2) — F({a}) — F({c}) + F({a, c})

B:BC{ac}
=00-01-02+03
=0
=f({a,c}) Vv

m Similarly for other subsets...
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m A functional + : 2% — [0, 1] is called maxitive if
B(AU B) = max{u(A), 4(B)}, all A,B

Extends to finite (and arbitrary) unions

Common measures of dimension/complexity® are maxitive

Maxitivity implies:
m monotonicity® (easy)
m 2-alternating (pretty easy)
m oc-alternating (not as easy...)

Choquet: 1 maxitive + USC = #¢(:) = P(X N - # ©)

Turns out maxitivity forces a very special structure...

®e.g., packing dimension (Nguyen's book, p. 81-86)
850, 1 is a capacity (modulo boundary conditions at @, X)
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Define X = {x € X: h(x) > U}, for an upper semicontinuous
function h: X — [0,1], and U ~ Unif(0,1).

m Recall

M(A) =suph(x), ACX

! .|
m Maxitivity: L
ﬁ(AU B) = SUp h(X) N
xeAns o‘vo 0‘2 o‘.4 o‘s 0‘8 1‘0
= max{sup h(x), sup h(x)} )
XEA xEB

= maX{ﬁ(A),ﬁ(B)} Hitting prob, X = [0, 1]
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Maxitivity, cont.

m Fact:’ the only maxitive functionals are of the type above, i.e.,

P(A) =sup h(x), ACX, forsomeh
XEA

m So, for X'’s with a maxitive upper prob, the distribution is
completely determined by its hitting probability, i.e.,

PXNA#£2)=supP(X>x), ACX
XEA N=——
hitting prob

m Remarks:

m compare to mass/density function in ordinary probability
m recall my previous comment about sup's in p-values

"Molchanov's Proposition 1.16 (2005 version)
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Random sets in statistical inference

m Dempster's framework® from the 1960s, a generalization of
both fiducial & Bayes, was based on random sets

m Basic idea:
m statistical model: X = a(0, U)
m U ~ Py is an auxiliary variable, a “random seed”

For given (x, u), let Ty(u) ={0 € T : x = a(f,u)}

Note: u+ Ty(u) is a set-valued map®

Fiducial flip: take the “conditional distribution” of U, given
X = x, to be the marginal Py

Quantify uncertainty about 6, given X = x, via the dist'n of
the (data-dependent) random set T (U) with U ~ Py

8Modern description in Dempster (2008 /JAR)

®Dempster and others sometimes call this a multivalued map
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Random sets in statistical inference, cont.

m Dempster's formulation is subjective; no
concern about statistical properties

Monographs on Statistics and Applied Probability 147

m Rather than the fiducial flip Inferential
m quantify uncertainty about U, given Models
X =x, by arandomset f CU Reasoning with

™ TX(U) — Uueu TX(U) Uncertainty.

m T(A) = Pu{T.(U) N A # &} 1

m For suitable U, inference about 6 based
on dist'n of Ty (U) is valid,

Ryan Martin
Chuanhai Liu

sup Px|o{Mx(A) < a} <«
feA

foralla€[0,1] and al ACT
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Next lecture

Possibility theory
Examples

Properties
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