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This lecture

Part 1:

one more random set example
brief rant

Part 2:

possibility theory
intuition and formal definition
first properties of possibility measures
examples
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Example

Common in robust statistics,1 define the ε-contamination class

P = {(1− ε)P0 + εQ : Q is any probability on X}

ε ∈ (0, 1) is a specified constant
P0 is a specified probability on X

Define the lower envelope of P,

Π(A) = inf
P∈P

P(A), A ⊆ X

Claims:2

1 Π is ∞-monotone (hence 2-monotone)
2 P = C (Π)

1Huber, Kadane & Wasserman, Walley, ...
2Basically, Problem 3.6 in Nguyen’s book
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Brief rant

What we’re doing is bigger than just the math

Recognition that there’s more to uncertainty than probability
is relevant to everyday life

We’re constantly being told what to do/think

Rationale is as follows:

“ran the numbers” = fit a model, estimated probabilities
recommended policy based on maximum expected utility
it’s “data-driven” and, therefore, “objective” and “right”

Can complex, real-world problems be solved so precisely??
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Brief rant, cont.

Naive Probabilism:3 Belief that all real-world decision
problems can be solved as described in (prob) textbooks

Enlightened Probabilism:

When gambling, think probability
When hedging, think plausibility
When preparing, think possibility

Otherwise, stop thinking — just survive

Crane’s presentation is more qualitative, but the connection to
imprecise probability is clear

The point is that precision is the outlier case, and that dealing
with imprecision is key to critical thinking

ST790 is about common sense and math

3Crane, https://researchers.one/articles/21.04.00004
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Pause

Transition from Part 1 to Part 2
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Introduction

The capacities we’ve seen so far were derived, i.e., they
inherited their properties from, say, a random set

This is a convenient way to get started w/ imprecise prob

But we could just directly define our class of capacities to
have properties we want

These properties would be driven by what we think
uncertainty quantification ought to achieve

Precise probabilities are too rigid

Want more flexibility without too much added complexity
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Intro, cont.

Basic insight: probable =⇒ possible, but not conversely

Hence, possibility is more primitive than probability

In statistics at least, often we’re only asking for possibility-
related conclusions — think hypothesis testing

So, maybe it’s enough to reason with possibility...

Possibility theory4 is a simple-yet-powerful framework for
reasoning and uncertainty quantification

being simple means that it’s not right for all applications
but I believe that it’s “right” for statistics

4Closely related to fuzzy set theory; also to random sets & belief functions
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Possibility

Helps to think in terms of Shackle’s potential surprise5

Two extreme cases:

poss(E ) = 1 → not surprised at all if E occurred
poss(E ) = 0 → totally surprised if E occurred

Degrees of possibility/surprise?

little surprised if it rained tomorrow
more surprised if it snowed tomorrow
totally surprised if sun didn’t rise tomorrow

Possibility/surprise is not probability6

multiple, mutually exclusive assertions can be 100% possible
e.g., I wouldn’t be surprised if my grant proposal gets rejected,
nor would I be surprised if it gets accepted

5This terminology makes clear that the notions of possibility we’re talking
about are subjective; “potential” indicates this is an advance assessment

6In fact, probability is not even a special case of possibility
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Possibility, cont.

To me, what distinguishes possibility & probability is this:

probability is relative, possibility is absolute

So, roughly, possibility can be assessed separately for each E

Example: draw a ball from a bag

poss(Green) need not depend on what’s in the bag
equally-likely probability model,7 say, needs to know how many
distinct colors are in the bag

The above statement is not strictly true — without some
relationships we can’t guarantee coherence

That’s where the math comes in...

7e.g., Laplace’s principle of insufficient reason
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Possibility, cont.

Statistics: X ∼ Pθ with θ unknown

None of the classical inference questions/objectives directly
involve assigning probabilities8 to θ

All can be related to possibility/surprise, however:

point estimation → most possible parameter value?
hypothesis testing → is “H0 true” sufficiently possible?
confidence sets → which θ’s are (individually) suff. possible?

Hypothesis tests:

Fisher’s significance tests don’t refer to an alternative
meant to be absolute assessments of whether data is
sufficiently compatible with truthfulness of H0

small p-value means I’d be sufficiently surprised if H0 was true,
doesn’t say anything about, e.g., support for Hc

0

8Falsificationist school (Popper et al) says probabilities aren’t needed
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Example

World is X, true state is one of these values

Suppose I learn that E ⊆ X contains the true state

For uncertainty quantification about the unknown state, how
might I assess the “possibility” of other assertions?

Reasonable strategy:

Π(A) =

{
1 if A ∩ E 6= ∅
0 otherwise,

A ⊆ X

i.e., if A∩ E 6= ∅, then wouldn’t be surprised if A were true; if
A ∩ E = ∅, then totally surprised if A were true

Total ignorance is the special case E = X

12 / 17



Example, cont.

Note that Π above clearly satisfies

Π(A ∪ B) = max{Π(A),Π(B)}, all A,B ⊆ X

This is the maxitivity property from before

Therefore, Π is very nice/simple:

Π is ∞-alternating
induced by a random set (what is it?)

Upon careful reflection, maxitivity is the only way for
possibility to be “absolute” in the sense above

So, maxitivity is taken as an axiom of possibility theory
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Possibility measures

Definition

A functional Π : 2X → [0, 1] is a possibility measure if

1 Π(∅) = 0

2 Π(X) = 1

3 Π is maxitive

The conjugate/dual, Π, of Π is a necessity measure

Like usual, Π(·) ≤ Π(·)
Unique feature of possibility: inequality is “basically strict”

Π(A) > 0 =⇒ Π(A) = 1

Π(A) < 1 =⇒ Π(A) = 0
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Possibility measures, cont.

As with general maxitive capacities, everything is determined
by a “hitting probability” function

Called a possibility distribution or possibility contour9

Starting with a usc function π : X→ [0, 1] that satisfies the
property supx∈X π(x) = 1, define

Π(A) = sup
x∈A

π(x), A ⊆ X

Π is a possibility, and the corresponding necessity is

Π(A) = 1− Π(Ac) = 1− sup
x∈Ac

π(x), A ⊆ X

9I may say “plausibility” instead of “possibility” for reasons that’ll be clear...
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Example

Let X = [0, 1] and let F be a CDF10 on X

Define the function π(x) = 1− |2F (x)− 1|

Possibility and necessity:

Π(A) = sup
x∈A

π(x)

Π(A) = 1− sup
x∈Ac

π(x)

Induced by the random set

X = {x : π(x) ≥ π(X )}

where X ∼ F
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10Plot is for F = Beta(3, 1)
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Next lecture

More possibility theory

Examples

Properties

Connections to imprecise probability
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