ST790 — Fall 2022 Imprecise-Probabilistic Foundations of Statistics

Ryan Martin North Carolina State University www4.stat.ncsu.edu/~rmartin

Week 04b

- Belief functions origins & perspectives
- Definition and basic properties
- Connections to random sets & possibility measures
- Examples

...

- Belief function theory might be the largest "IP community"¹
- BELIEF 2022 conference in October²
- Probably the first formal IP theory (1960s)
- Synonymous with Dempster–Shafer theory³
- Commonly used in CS, ENGR, AI, ...
- There are some fundamental differences between "belief functions" and "imprecise probabilities"
- Dempster & Shafer had different perspectives
- Our focus will be on Shafer's...

¹BFAS, https://bfasociety.org

²http://hebergement.universite-paris-saclay.fr/belief2022/ ³http://op.wikipedia.org/wiki/Dompston-Shafer_theory

³https://en.wikipedia.org/wiki/Dempster-Shafer_theory

Origins

- I previously mentioned Art Dempster's formulation
- Motivated by statistical inference, "first to understand and then to replace"⁴ Fisher's fiducial argument
- Closely related to random sets, or multivalued maps
- Dempster's view is closer to imprecise probability:
 - imprecision is unavoidable in some problems
 - leads to *bounds* on (subjective) probabilities
 - need a calculus⁵ for inference & reasoning
- So, roughly, Dempster views a "belief function" through a credal-set lens, i.e., bounds on (subjective) probabilities

⁴In Dempster's foreword to Shafer's 1976 book

⁵e.g., "Dempster–Shafer calculus for statisticians" (*IJAR* 2008)

- Glenn Shafer's approach was quite different, though the math is more-or-less the same as Dempster's
- S developed D's ideas into a general & powerful framework
- In the spirit of Kolmogorov, Shafer developed an axiom-based system, A Mathematical Theory of Evidence
- Shafer's view is different from Dempster's/IP's:
 - "evidence \rightarrow degrees-of-belief" is imprecise
 - degrees of belief need not be related to probabilities
 - Dempster's calculus is a central piece
- So, roughly, Shafer views a "belief function" as its own thing irrespective of any probability bounds

Definition.

A functional $\underline{\Pi}: 2^{\mathbb{X}} \rightarrow [0,1]$ is a belief function if

- $\underline{\Pi}(\varnothing) = 0$
- $\underline{\mathsf{2}} \ \underline{\mathsf{\Pi}}(\mathbb{X}) = 1$
- 3 Π is ∞ -monotone

The dual, $\overline{\Pi}$, is called a *plausibility function*

- For good reason, Shafer's book focuses exclusively on the *finite-*X *case*, as does much of the literature
- I'll do the same (for the most part)
- Common in the literature to see <u>Π</u>(·) and <u>Π</u>(·) denoted as bel(·) and pl(·), respectively⁶

⁶Because they're not interpreted as "lower" and "upper" probabilities

Belief functions, cont.

Shafer's approach is similar to Kolmogorov's

- purposely offers no justification for his axioms, no claims that one would be "irrational" to refute them
- focus is on developing the subsequent math
- His axioms are similar to Kolmogorov's too just swap countable-additivity for ∞-monotonicity
- Contains probability & possibility as special cases
- Choquet: equivalent to a random set (when X is finite)
- Imprecise-probabilistic consequences (if you wish):
 - no-sure-loss
 - coherence
- So far, nothing new to us...

Belief functions, cont.

- Set/recall some notation and terminology⁷
 - X is called the *frame of discernment* or *frame* (finite)
 - a *basic probability assignment* is just a probability mass function $m: 2^{\mathbb{X}} \rightarrow [0, 1]$
 - subsets A with m(A) > 0 are called *focal elements*⁸
- For finite frames, Choquet's theorem implies a one-to-one correspondence between <u>Π</u>'s and *m*'s, i.e.,

$$\underline{\Pi}(A) = \sum_{B \in 2^{\mathbb{X}}: B \subseteq A} m(B), \quad A \in 2^{\mathbb{X}}$$

• Similarly,
$$\overline{\Pi}(A) = \sum_{B \in 2^{\mathbb{X}}: B \cap A \neq \varnothing} m(B)$$

⁷I'll mostly follow notation and terminology in Cuzzolin's near-encyclopedic book, *The Geometry of Uncertainty*, 2021

⁸If *m* is understood as the mass function of a random set \mathcal{X} on finite \mathbb{X} , then the collection of focal elements is just the support of \mathcal{X}

• For fixed $S \in 2^{\mathbb{X}}$ and $s \in [0, 1]$, a simple support function is

$$\underline{\Pi}(A) = \begin{cases} 0 & \text{if } A = \emptyset \\ s & \text{if } A \supseteq S \text{ but } A \neq \mathbb{X} \\ 1 & \text{if } A = \mathbb{X} \end{cases}$$

- Corresponds to a random set \mathcal{X} with mass function m...
- Interpretation:
 - Shafer: "corresponds to a body of evidence whose precise and full effect is to support the subset S to the degree s"
 - Me: "I'm 100s% sure S is true"
- In statistics:
 - simple, easily elicitable prior, provides valuable info
 - what do we do with it, how do we combine with...?

⁹See Example 2 on page 36 of Cuzzolin...

DS calculus: preview

• Consider two simple support functions $\underline{\Pi}_1$ and $\underline{\Pi}_2$ on $\mathbb X$

- determined by pairs (S_1, s_1) and (S_2, s_2)
- \blacksquare corresponding random sets \mathcal{X}_1 and \mathcal{X}_2
- Suppose, in my judgment, the bodies of evidence leading to $\underline{\Pi}_1$ and to $\underline{\Pi}_2$ are "independent"
- How to combine independent bodies of evidence?
- The DS calculus says, roughly:
 - treat \mathcal{X}_1 and \mathcal{X}_2 as independent in the usual prob sense
 - interpret $\mathcal{X}_1 \cap \mathcal{X}_2 \subseteq A$ as "support for A"
 - remove "conflict cases" where $\mathcal{X}_1 \cap \mathcal{X}_2 = \varnothing$

DS calculus: preview, cont.

Assume $S_1 \cap S_2 \neq \emptyset$, "no conflict" Combined belief function is given by $(\underline{\Pi}_1 \oplus \underline{\Pi}_2)(A) = \mathsf{P}(\underbrace{\mathcal{X}_1 \cap \mathcal{X}_2 \subseteq A}_{} \mid \underbrace{\mathcal{X}_1 \cap \mathcal{X}_2 \neq \varnothing}_{})$ support for A no conflict $= \cdot \cdot \cdot$ $=\begin{cases} 0 & A \not\supseteq S_1 \cap S_2 \\ s_1 s_2 & A \supseteq S_1 \cap S_2, A \not\supseteq S_1, S_2 \\ s_1 & A \supseteq S_1, A \not\supseteq S_2 \\ s_2 & A \supseteq S_2, A \not\supseteq S_1 \\ 1 - (1 - s_1)(1 - s_2) & A \supseteq S_1 \cup S_2, A \neq \mathbb{X} \\ 1 & A = \mathbb{X} \end{cases}$

If $S_1 \cap S_2 = \emptyset$, then there's "conflict" — common!

- More belief functions
- Dempster's rule of combination
- Examples
- Credal set-related properties

...