ST790 — Fall 2022 Imprecise-Probabilistic Foundations of Statistics

Ryan Martin North Carolina State University www4.stat.ncsu.edu/~rmartin

Week 05a

- Belief functions recap
- Connection to possibility measures
- Credal set contents
- Dempster's rule of combination
- Examples
- Generalization of Bayes rule

• $\underline{\Pi}: 2^{\mathbb{X}} \to [0,1]$ is a *belief function* if

- $\blacksquare \underline{\Pi}(\varnothing) = 0$
- $\underline{\Pi}(\mathbb{X}) = 1$
- it's ∞ -monotone
- Dual $\overline{\Pi}$ is a *plausibility function*
- For finite frame X, there exists a basic probability assignment m, i.e., a probability mass function on 2^X, with

$$\underline{\Pi}(A) = \sum_{B \in 2^{\mathbb{X}}: B \subseteq A} m(B), \quad A \subseteq \mathbb{X}$$

• Set A with m(A) > 0 are called *focal elements*

Connection to possibility theory

- A necessity measure is a belief function
- How can we tell if a belief function a necessity measure?
- Fact: X has a maxitive capacity iff X is nested, i.e.,

 $\mathcal{X}(\omega) \subseteq \mathcal{X}(\omega')$ or $\mathcal{X}(\omega) \supseteq \mathcal{X}(\omega')$ for all (ω, ω')

■ Roughly, possibility measures ⇐⇒ nested random sets

- So, belief = necessity iff focal elements are nested
 - (finite \mathbb{X}) belief function determines a random set \mathcal{X}
 - focal elements are the realizations of \mathcal{X}
- In the belief function literature, "nested focal elements" is often referred to as consonance¹²

¹Consonance = "no conflict" = "evidence points in a single direction"

²See Figure 2.7 in Cuzzolin for an illustration

- Consonance ("no conflict") is a strong assumption
- Can't be justified in many contexts
- Shafer criticizes Shackle on the grounds that it's too optimistic to "ban the appearance of conflict"
- Shafer describes one general class of problems where consonance makes sense:
 - inferential evidence
 - "the evidence for a cause that is provided by an effect"
- That's what we're dealing with in statistics!
- BTW, there's interesting work on *consonant approximations* general belief functions³

³e.g., Dubois & Prade (*IJAR* 1990)

Credal set contents

- Shafer doesn't interpret belief as a lower prob
- But there's still a credal set, so what's in it?
- $\mathscr{C}(\mathsf{Bel}) \to$
- Edges parallel to sides of the triangle
- Shapley's theorem: $\leq |\mathbb{X}|!$ vertices, given by (3.12)
- Section 4.3 of Nguyen

Fig. 3.3: A belief function is a credal set with boundaries determined by lower and upper bounds (3.10) on probability values.

Extremal probabilities of credul sets associated with belief functions Although the set $\mathcal{P}[Bel]$ (3.10) is a polytope in the simplex \mathcal{P} of all probabilities we can define on \mathcal{O} , not all credul sets there 'are' belief functions. Credul sets associated with BFs have vertices of a very specific type (see Fig. 3.3). The latter are all the distributions P^{π} induced by a permutation $\pi = \{x_{\pi}(j), \dots, x_{\pi}(|\mathcal{O}|)\}$ of the singletons of $\mathcal{O} = \{x_1, \dots, x_n\}$ of the form [245, 339]

$$P^{\pi}[Bel](x_{\pi(i)}) = \sum_{A \ni x_{\pi(i)}; \ A \not\ni x_{\pi(j)} \ \forall j < i} m(A).$$
(3.12)

Such an extremal probability (3.12) assigns to a singleton element put in position $\pi(i)$ by the permutation π the mass of all the focal elements containing it, but not containing any elements preceding it in the permutation order [1879].

Cuzzolin (2021), p. 67

Credal set contents, cont.

- Any $P \in \mathscr{C}(Bel)$ is an allocation of probability
- Intuitively: just allocate the mass m(A) to the points x in A
- Formally: $\alpha : \mathbb{X} \times 2^{\mathbb{X}} \to [0,1]$ is an *allocation* (of *m*) if

$$\sum_{x\in A} \alpha(x,A) = m(A), \quad A \subseteq \mathbb{X}$$

e.g., uniform allocation (assoc w/ Shapley value) is

$$lpha(x,A)\equiv rac{m(A)}{|A|}, \quad x\in A, \quad A\subseteq \mathbb{X}$$

Theorem.

 $\mathscr{C}(\mathsf{Bel}_m) = \{\mathsf{P}_\alpha : \alpha \text{ an allocation of } m\}, \text{ where } \mathsf{P}_\alpha \text{ has mass fun}$

$$p_{\alpha}(x) = \sum_{A:A \ni x} \alpha(x, A), \quad x \in \mathbb{X}$$

Example

Example from Week 02b slides:

A	Ø	{ <i>a</i> }	{ <i>b</i> }	{ <i>c</i> }	$\{a,b\}$	$\{a, c\}$	{ <i>b</i> , <i>c</i> }	$\{a, b, c\}$
m(A)	0.0	0.1	0.1	0.2	0.3	0.0	0.2	0.1

Find P corresponding to the uniform allocation α :

$$p_lpha(x) = \sum_{A:A
i x} rac{m(A)}{|A|}, \quad x \in \{a,b,c\}$$

$$p_{\alpha}(a) = 0.1 + \frac{0.3}{2} + \frac{0.1}{3} = 0.283$$

$$p_{\alpha}(b) = 0.1 + \frac{0.3}{2} + \frac{0.2}{2} + \frac{0.1}{3} = 0.383$$

$$p_{\alpha}(c) = 0.2 + \frac{0.2}{2} + \frac{0.1}{3} = 0.333$$

Remarks on allocations

- Roughly, allocations \approx mixtures
- For belief funs induced by \mathcal{X} on general \mathbb{X}^4
 - $\mathcal{X}(\omega)$ set-valued map on $(\Omega, \mathscr{B}(\Omega), \mu)$
 - belief function $\underline{\Pi}(A) = \mu\{\omega : \mathcal{X}(\omega) \subseteq A\}$
 - P ∈ 𝔅(<u>Π</u>) iff there exists probability measures Q_ω supported on 其(ω) such that

$$\mathsf{P}(\mathsf{A}) = \int_\Omega \mathsf{Q}_\omega(\mathsf{A})\,\mu(\mathsf{d}\omega)$$

Same is basically true for general belief functions,⁵ but too complicated for us here...

⁴Wasserman (Ann. Stat 1990) "Prior envelopes..."
 ⁵Shafer (Ann. Prob 1979) "Allocations of probability"

Dempster's rule of combination

- Two "independent" belief functions <u>Π</u>₁ and <u>Π</u>₂ on X, determined by mass functions *m*₁ and *m*₂, resp.
- How to combine?

Dempster's rule of combination.

Orthogonal sum of $\underline{\Pi}_1$ and $\underline{\Pi}_2$, denoted by $\underline{\Pi}_1 \oplus \underline{\Pi}_2$ is given by

$$(\underline{\Pi}_1 \oplus \underline{\Pi}_2)(A) = rac{1}{1-\kappa} \sum_{A_1,A_2: \varnothing \neq A_1 \cap A_2 \subseteq A} m_1(A_1) m_2(A_2), \quad A \subseteq \mathbb{X},$$

where κ denotes the "degree of conflict" a

$$\kappa = \sum_{A_1, A_2: A_1 \cap A_2 = \varnothing} m_1(A_1) m_2(A_2)$$

 ${}^{a}\underline{\Pi}_{1}$ and $\underline{\Pi}_{2}$ aren't *combinable* if $\kappa=1$

Dempster's rule, cont.

- Frame $\Theta = \{\theta_1, \theta_2, \theta_3, \theta_4\}$
- Two mass functions

$$m_1(A) = \begin{cases} 0.7 & A = \{\theta_1\} \\ 0.3 & A = \{\theta_1, \theta_2\} \end{cases}$$
$$m_2(A) = \begin{cases} 0.6 & A = \{\theta_2, \theta_3, \theta_4\} \\ 0.4 & A = \Theta \end{cases}$$

- $\kappa = 0.7 \times 0.6 = 0.42$
- Combined mass function

$$m(A) = \begin{cases} 0.483 & A = \{\theta_1\} \\ 0.207 & A = \{\theta_1, \theta_2\} \\ 0.310 & A = \{\theta_2\} \end{cases}$$

Dempster's rule is

- commutative, i.e., $\underline{\Pi}_1 \oplus \underline{\Pi}_2 = \underline{\Pi}_2 \oplus \underline{\Pi}_1$
- associative, i.e., $(\underline{\Pi}_1 \oplus \underline{\Pi}_2) \oplus \underline{\Pi}_3 = \underline{\Pi}_1 \oplus (\underline{\Pi}_2 \oplus \underline{\Pi}_3)$
- This makes belief function theory quite appealing:
 - any relevant piece of evidence gets encoded as a belief function
 - if they're judged to be independent, then just combine them using Dempster's rule as above
- Similar to probability:
 - if I have independent marginal distributions
 - then combine them by multiplying

Dempster's rule, cont.

- Dempster's rule also generalizes Bayes's rule
- Compare "updating" and "combining"
- Start with two belief functions
 - one is general, <u>Π</u>
 - other is extreme, $\underline{\Pi}_B(A) = 1(A \supseteq B)$
- Second piece of evidence: "B is true"

Combine via Dempster's rule:

$$\underline{\Pi}(A \mid B) := (\underline{\Pi} \oplus \underline{\Pi}_B)(A) = \frac{\underline{\Pi}(A \cup B^c) - \underline{\Pi}(B^c)}{1 - \underline{\Pi}(B^c)}$$

In terms of plausibility:

$$\overline{\Pi}(A \mid B) = rac{\overline{\Pi}(A \cap B)}{\overline{\Pi}(B)}$$

- Powerful framework, commonly used in AI
- I'll show some more interesting/practical examples later
- Some potential project ideas:⁶
 - variations on the DS framework
 - efficient computations
 - **...**
- While individual belief functions are coherent, some issues can arise when they're combined via Dempster's rule...

⁶You can find some details in Cuzzolin's book

- Choquet integration
- Probability via expected values (previsions)
- Lower probability via lower previsions
- Coherence
- **.**..