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This lecture

Belief functions recap

Connection to possibility measures

Credal set contents

Dempster’s rule of combination

Examples

Generalization of Bayes rule
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Recap

Π : 2X → [0, 1] is a belief function if

Π(∅) = 0
Π(X) = 1
it’s ∞-monotone

Dual Π is a plausibility function

For finite frame X, there exists a basic probability assignment
m, i.e., a probability mass function on 2X, with

Π(A) =
∑

B∈2X:B⊆A

m(B), A ⊆ X

Set A with m(A) > 0 are called focal elements
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Connection to possibility theory

A necessity measure is a belief function

How can we tell if a belief function a necessity measure?

Fact: X has a maxitive capacity iff X is nested, i.e.,

X (ω) ⊆ X (ω′) or X (ω) ⊇ X (ω′) for all (ω, ω′)

Roughly, possibility measures⇐⇒ nested random sets

So, belief = necessity iff focal elements are nested

(finite X) belief function determines a random set X
focal elements are the realizations of X

In the belief function literature, “nested focal elements” is
often referred to as consonance12

1Consonance = “no conflict” = “evidence points in a single direction”
2See Figure 2.7 in Cuzzolin for an illustration
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Remarks on consonance

Consonance (“no conflict”) is a strong assumption

Can’t be justified in many contexts

Shafer criticizes Shackle on the grounds that it’s too
optimistic to “ban the appearance of conflict”

Shafer describes one general class of problems where
consonance makes sense:

inferential evidence
“the evidence for a cause that is provided by an effect”

That’s what we’re dealing with in statistics!

BTW, there’s interesting work on consonant approximations
general belief functions3

3e.g., Dubois & Prade (IJAR 1990)
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Credal set contents

Shafer doesn’t interpret
belief as a lower prob

But there’s still a credal
set, so what’s in it?

C (Bel) →

Edges parallel to sides of
the triangle

Shapley’s theorem:

≤ |X|! vertices,

given by (3.12)

Section 4.3 of Nguyen

Cuzzolin (2021), p. 67
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Credal set contents, cont.

Any P ∈ C (Bel) is an allocation of probability

Intuitively: just allocate the mass m(A) to the points x in A

Formally: α : X× 2X → [0, 1] is an allocation (of m) if∑
x∈A

α(x ,A) = m(A), A ⊆ X

e.g., uniform allocation (assoc w/ Shapley value) is

α(x ,A) ≡ m(A)

|A|
, x ∈ A, A ⊆ X

Theorem.

C (Belm) = {Pα : α an allocation of m}, where Pα has mass fun

pα(x) =
∑

A:A3x
α(x ,A), x ∈ X
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Example

Example from Week 02b slides:

A ∅ {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}
m(A) 0.0 0.1 0.1 0.2 0.3 0.0 0.2 0.1

Find P corresponding to the uniform allocation α:

pα(x) =
∑

A:A3x

m(A)

|A|
, x ∈ {a, b, c}

pα(a) = 0.1 +
0.3

2
+

0.1

3
= 0.283

pα(b) = 0.1 +
0.3

2
+

0.2

2
+

0.1

3
= 0.383

pα(c) = 0.2 +
0.2

2
+

0.1

3
= 0.333
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Remarks on allocations

Roughly, allocations ≈ mixtures

For belief funs induced by X on general X4

X (ω) set-valued map on (Ω,B(Ω), µ)
belief function Π(A) = µ{ω : X (ω) ⊆ A}
P ∈ C (Π) iff there exists probability measures Qω supported
on X (ω) such that

P(A) =

∫
Ω

Qω(A)µ(dω)

Same is basically true for general belief functions,5 but too
complicated for us here...

4Wasserman (Ann. Stat 1990) “Prior envelopes...”
5Shafer (Ann. Prob 1979) “Allocations of probability”
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Dempster’s rule of combination

Two “independent” belief functions Π1 and Π2 on X,
determined by mass functions m1 and m2, resp.

How to combine?

Dempster’s rule of combination.

Orthogonal sum of Π1 and Π2, denoted by Π1 ⊕ Π2 is given by

(Π1 ⊕ Π2)(A) =
1

1− κ
∑

A1,A2:∅6=A1∩A2⊆A
m1(A1)m2(A2), A ⊆ X,

where κ denotes the “degree of conflict”a

κ =
∑

A1,A2:A1∩A2=∅

m1(A1)m2(A2)

aΠ1 and Π2 aren’t combinable if κ = 1
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Dempster’s rule, cont.

Frame Θ = {θ1, θ2, θ3, θ4}

Two mass functions

m1(A) =

{
0.7 A = {θ1}
0.3 A = {θ1, θ2}

m2(A) =

{
0.6 A = {θ2, θ3, θ4}
0.4 A = Θ

κ = 0.7× 0.6 = 0.42

Combined mass function

m(A) =


0.483 A = {θ1}
0.207 A = {θ1, θ2}
0.310 A = {θ2}

Cuzzolin (2021), p. 39
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Dempster’s rule, cont.

Dempster’s rule is

commutative, i.e., Π1 ⊕ Π2 = Π2 ⊕ Π1

associative, i.e., (Π1 ⊕ Π2)⊕ Π3 = Π1 ⊕ (Π2 ⊕ Π3)

This makes belief function theory quite appealing:

any relevant piece of evidence gets encoded as a belief function
if they’re judged to be independent, then just combine them
using Dempster’s rule as above

Similar to probability:

if I have independent marginal distributions
then combine them by multiplying
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Dempster’s rule, cont.

Dempster’s rule also generalizes Bayes’s rule

Compare “updating” and “combining”

Start with two belief functions

one is general, Π
other is extreme, ΠB(A) = 1(A ⊇ B)

Second piece of evidence: “B is true”

Combine via Dempster’s rule:

Π(A | B) := (Π⊕ ΠB)(A) =
Π(A ∪ Bc)− Π(Bc)

1− Π(Bc)

In terms of plausibility:

Π(A | B) =
Π(A ∩ B)

Π(B)
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Remarks about DS

Powerful framework, commonly used in AI

I’ll show some more interesting/practical examples later

Some potential project ideas:6

variations on the DS framework
efficient computations
...

While individual belief functions are coherent, some issues can
arise when they’re combined via Dempster’s rule...

6You can find some details in Cuzzolin’s book
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Next lecture

Choquet integration

Probability via expected values (previsions)

Lower probability via lower previsions

Coherence

...
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