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This lecture

Belief functions recap

Connection to possibility measures
Credal set contents

Dempster’s rule of combination

Examples

Generalization of Bayes rule
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m [1:2% = [0,1] is a belief function if
m [1(@)=0
m(X)=1
m it's co-monotone

m Dual M is a plausibility function

m For finite frame X, there exists a basic probability assignment
m, i.e., a probability mass function on 2% with

nA)= > m(B), AcX
Be2X:BCA

m Set A with m(A) > 0 are called focal elements

3/15



Connection to possibility theory

m A necessity measure is a belief function
m How can we tell if a belief function a necessity measure?

m fact: X has a maxitive capacity iff X" is nested, i.e.,

X(w) CX(W) or X(w)D X(W) forall (w,w’)

Roughly, possibility measures <=> nested random sets
m So, belief = necessity iff focal elements are nested
m (finite X) belief function determines a random set X’
m focal elements are the realizations of X
m In the belief function literature, “nested focal elements” is
often referred to as consonance'?

!Consonance = “no conflict” = “evidence points in a single direction”

2See Figure 2.7 in Cuzzolin for an illustration
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Remarks on consonance

m Consonance (“no conflict”) is a strong assumption
m Can't be justified in many contexts
m Shafer criticizes Shackle on the grounds that it's too
optimistic to “ban the appearance of conflict”
m Shafer describes one general class of problems where
consonance makes sense:
m inferential evidence
m “the evidence for a cause that is provided by an effect”
m That's what we're dealing with in statistics!

m BTW, there's interesting work on consonant approximations
general belief functions3

3e.g., Dubois & Prade (/JAR 1990)
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set contents

Shafer doesn't interpret
belief as a lower prob

But there's still a credal
set, so what's in it?

¢ (Bel) —
Edges parallel to sides of
the triangle
Shapley’s theorem:
< IX]! vertices,
given by (3.12)

Section 4.3 of Nguyen

3.1 The multiple semantics of belief functions 67

P =1
2

P& -1 ‘\\ p(2) =02 \\\ P0)=1

Fig. 3.3: A belief function is a credal set with boundaries determined by lower and
upper bounds (3.10) on probability values.

Extremal probabilities of credal sets associated with belief functions Although
the set P[Bel] (3.10) is a polytope in the simplex P of all probabilities we can define
on O, not all credal sets there ‘are’ belief functions. Credal sets associated with BFs
have vertices of a very specific type (see Fig. 3.3). The latter are all the distributions
P™ induced by a permutation ™ = {Z(1),---,Zx(ey} of the singletons of © =
{21,...,2n} of the form [245, 339]

P[Bel)(zq() = 3> m(A). (3.12)

AD(ay; AFT () Vi<

Such an extremal probability (3.12) assigns to a singleton element put in position
7 (%) by the permutation 7 the mass of all the focal elements containing it, but not
containing any elements preceding it in the permutation order [1879].

Cuzzolin (2021), p. 67
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Credal set contents, cont.

m Any P € €(Bel) is an allocation of probability
m Intuitively: just allocate the mass m(A) to the points x in A
m Formally: o : X x 2% —[0,1] is an allocation (of m) if

> a(x, A)=m(A), ACX

XEA

m e.g., uniform allocation (assoc w/ Shapley value) is

a Ay =T A acx

Theorem.

% (Belm) = {P4 : @ an allocation of m}, where P, has mass fun

Palx)= 3 alx,A), xeX
A:ASx
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Example from Week 02b slides:

A |2 {ap {b} {c} {ab} {a C} {b,c} {abc}

m(A) |00 01 01 02 03

0.2

Find P corresponding to the uniform allocation «:

m(A
Pl = 3 T,

A:Adx
.1
p()—01+(2j+0?:0.283
03 02 0.1
a(b) =01+ == + ==+ == =
Pa(b) = 0.1+ == + ==+ == = 0.383
0.2 0.1
pa(C) =02+ 7 + ? =0.333

x € {a, b, c}

SN Dy
iz

|-
I
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Remarks on allocations

m Roughly, allocations ~ mixtures

m For belief funs induced by X on general X*
m X (w) set-valued map on (Q, B(Q), 1)
m belief function M(A) = p{w : X(w) C A}

m P € €(N) iff there exists probability measures Q,, supported
on X(w) such that

P(A) = /Q Qu(A) (dw)

m Same is basically true for general belief functions,® but too
complicated for us here...

*Wasserman (Ann. Stat 1990) “Prior envelopes...”
®Shafer (Ann. Prob 1979) “Allocations of probability”
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Dempster's rule of combination

m Two “independent” belief functions [1; and 1, on X,
determined by mass functions my and mo, resp.

m How to combine?

Dempster’s rule of combination.

Orthogonal sum of [1; and [1,, denoted by [1; & [1, is given by

1
(0y ® M,)(A) = 7— > mi (A1) m(Az2), ACXK,
A1,A2:P#AINACA

where k denotes the “degree of conflict”?

k= > mi(A) m(A)

A1,A2:A1NA=2

M, and I, aren't combinable if k =1
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Dempster’s rule, cont.

m Frame © = {91792,93,94}

m Two mass functions

P PN B, N\
/ ° '\ o / R 0,° \\‘
07 A = ‘{01} (@4 ° ) \ o 0 0° )
m(A) = N AN
0.3 A= {b1,0-} - -
P |
06 A= {02, 93,94} s, | Bl
my(A) =
04 A=06 m{0,6)=03 | 0,0} | {0} /
P
my(0)=04  my({6,.,0,.0})=0.6
B x=0.7x0.6=0.42 @ ° N\
o | X x, °
. X g
m Combined mass function N
Fig. 2.3: Example of Dempster ion, and its graphical

0483 A= {0}
m(A) = 0.207 A= {91, 02}
0.310 A= {6}

Cuzzolin (2021), p. 39
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Dempster’s rule, cont.

m Dempster's rule is

m commutative, i.e.,, 0; &0, =N, & N,

m associative, i.e., (N; ®N,) @My =N, & (0, ® M)
m This makes belief function theory quite appealing:

m any relevant piece of evidence gets encoded as a belief function
m if they're judged to be independent, then just combine them
using Dempster’s rule as above

m Similar to probability:

m if | have independent marginal distributions
m then combine them by multiplying
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Dempster’s rule, cont.

m Dempster's rule also generalizes Bayes's rule
m Compare “updating” and “combining”
m Start with two belief functions

m one is general, [T
m other is extreme, Mz(A) = 1(A 2 B)

Second piece of evidence: “B is true”

Combine via Dempster's rule:

N(A| B) = (N N)() = 14 L1J£3CI1)(Z?‘:H)(BC)

In terms of plausibility:

M(AN B)

N(A| B) = Ti(B)
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Remarks about DS

m Powerful framework, commonly used in Al

m I'll show some more interesting/practical examples later
m Some potential project ideas:®
m variations on the DS framework
m efficient computations
...
m While individual belief functions are coherent, some issues can
arise when they're combined via Dempster's rule...

5You can find some details in Cuzzolin's book
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Next lecture

Choquet integration

Probability via expected values (previsions)
Lower probability via lower previsions

Coherence
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