ST790 — Fall 2022 Imprecise-Probabilistic Foundations of Statistics

Ryan Martin North Carolina State University www4.stat.ncsu.edu/~rmartin

Week 06a

- New terminology, e.g., desirability
- De Finetti's theory of previsions (expectations)
- Imprecise version: lower and upper previsions
- Properties: coherence
- Examples

- In probability theory, we usually start with P and, from there, build the notion of E
- Alternatively, could start with E and define P by a restriction to indicator functions, i.e., $P(A) = E(1_A)$
- The two are equivalent, so it's a matter of taste
- In imprecise probability, there are differences
- Benefits to generalizing the approach that starts with E...

Intro, cont.

Benefits:

- in the imprecise prob case, lower/upper probs don't uniquely determine lower/upper expectation
- coherence conditions are more direct for expectations
- So it makes sense to build a general theory of imprecise probability based on lower/upper expectations
- All of the models we've discussed so far are special cases:
 - $(\underline{P}, \overline{P}) \rightarrow (\underline{E}, \overline{E})$ via Choquet integral
 - properties of \underline{P} lead to properties of the induced \underline{E}
- I presented the other theories first because I think those are more accessible starting points...

Setup, notation, terminology

- X is a general space; we can take it to be finite
- $f : \mathbb{X} \to \mathbb{R}$ is called a gamble¹²
 - payoff is f(X) utils, but $X \in \mathbb{X}$ is uncertain
 - e.g., $f \equiv 0$ means do nothing, no bet, no payoff
 - e.g., $f(x) = 1_A(x)$ means 1 util payoff if $x \in A$, 0 otherwise
- \mathcal{K} is a collection of gambles
 - need not have specific structure, e.g., 1_A might not be in \mathcal{K}
 - I'll assume it's a *linear space*, i.e., closed under linear combos

A gamble is *desirable* (to me) if I would accept it if offered

- e.g., $\sup f < 0$ means sure loss, not desirable
- e.g., f(x) = 1_A(x) − µ might be desirable to me or not, depends on my beliefs about A and magnitude of µ

$^1\mbox{Walley's}$ work takes gambles to be bounded functions, but the general case is addressed in Troffaes & De Cooman

²If X is finite, then gambles are just vectors

Axioms of desirability.

- 1 If $f \leq 0$ and $f \neq 0$, then not desirable
- **2** If $f \ge 0$ and $f \ne 0$, then desirable
- **3** If f is desirable and $\alpha > 0$, then αf is desirable
- 4 If f, g are desirable, then f + g is desirable
- \blacksquare There's a non-empty set $\mathcal{D} \subset \mathcal{K}$ of desirable gambles, a cone
- The axioms don't determine which gambles are desirable, just like Kolmogorov's axioms don't determine the prob values
- Question: how to specify \mathcal{D} so that I avoid incoherence?
- Two equivalent ways to proceed:
 - $\boldsymbol{\mathsf{x}}$ formulate coherence etc. in terms of the set $\mathcal D$
 - \checkmark let $\mathcal D$ be determined by (lower/upper) previsions and formulate coherence in terms of these

De Finetti's previsions

- De Finetti realized that there's no reason to restrict to bets on events; more convenient to focus on general gambles
- A *prevision*³ is a map from gambles to fair prices
- That is, P(f) is the value μ such that

 $\alpha(f - \mu)$ is desirable for all $\alpha \in \mathbb{R}$

- As we expect, De Finetti's conclusion is:
 - prevision is *coherent* if it corresponds to an expectation
 - that is, if⁴ it's linear, P(f + g) = P(f) + P(g)
- Requires pinning down a precise fair price for all gambles

³Here P stands for price/prevision, not probability

⁴also requires that $P(f) \ge \inf_{x} f(x)$

Lower (and upper) previsions

- Since setting fair prices for all gambles may not be realistic, try relaxing by only requiring lower and upper bounds
- Lower and upper previsions, denoted by <u>P</u> and <u>P</u>, are functionals mapping gambles in *K* to real numbers

$$\underline{\mathsf{P}}(f) = \sup\{\mu \in \mathbb{R} : f - \mu \text{ is desirable}\}\$$
$$\overline{\mathsf{P}}(f) = \inf\{\mu \in \mathbb{R} : \mu - f \text{ is desirable}\}\$$

- In other words:
 - $\underline{P}(f)$ is my sup buying price for f
 - $\overline{P}(f)$ is my inf selling price for f
- Technical note:
 - we don't specify whether, e.g., $f \underline{P}(f)$ is desirable,
 - only that $f \{\underline{P}(f) \delta\}$ is desirable for all $\delta > 0$

There's a conjugacy relationship between <u>P</u> and <u>P</u>

$$\overline{\mathsf{P}}(f) = \cdots = -\underline{\mathsf{P}}(-f), \quad f \in \mathcal{K}$$

• Like what we had for lower upper prob: $\overline{P}(A) = 1 - \underline{P}(A^c)$

- So it suffices to study properties of only one of the previsions in the pair — the literature focuses on <u>P</u>
- Speaking of lower/upper probabilities...
 - for sets A with $1_A \in K$, the lower prob can be defined in the natural way, i.e., $\underline{P}(A) = \underline{P}(1_A)$
 - \underline{P} can be *extended* to indicators if \mathcal{K} isn't big enough

Experiment:

- bag contains blue, green, and red balls
- X is the color of a sampled ball, so $\mathbb{X} = \{B, G, R\}$
- A desirable gamble: f(B) = 0, f(G) = 10, f(R) = 5
- I might be willing to pay some positive amount for f
- e.g., if I don't believe there are any B's, then $\underline{P}(f) = 5$
- It's in this sense that the lower/upper previsions I set correspond to degrees of belief

⁵Taken from Miranda & De Cooman, Ch. 2 of Introduction to IP

- New gamble: g(B) = 9, g(G) = 0, g(R) = 5
- Suppose I set $\underline{P}(g) = 6$ is this choice reasonable?
 - This specification, along with the desirability axioms, implies that I'm willing to pay up to \$11 for f + g
 - Absolute most I can win is \$10
 - Sure loss!
- So I'll set $\underline{P}(g) = 4$ to avoid sure loss
- But there are stricter notions of self-consistency we want

■ Like we saw before, <u>P</u> is *coherent* if

$$\sup_{x\in\mathbb{X}}\left[\sum_{i=1}^{n} \{f_i(x) - \underline{\mathsf{P}}(f_i)\} - a\{f_0(x) - \underline{\mathsf{P}}(f_0)\}\right] \ge 0, \quad \forall \ n, \ f_i, \ a \ge 0$$

Intuition:

- suppose the above condition fails
- then there exists *n*, f_i , $a \ge 0$, and $\varepsilon, \delta > 0$ such that

$$\sum_{i=1}^{n} [f_i(x) - \{\underline{\mathsf{P}}(f_i) - \varepsilon\}] \le a[f_0(x) - \{\underline{\mathsf{P}}(f_0) + \delta\}], \quad \forall \ x$$

- LHS is desirable by definition, so RHS is too
- then $f_0 \{\underline{P}(f_0) + \delta\}$ is desirable
- contradicts $\underline{P}(f_0)$ being the sup μ s.t. $f \mu$ is desirable

X	В	G	R
f	0	10	5
g	9	0	5
f-5	-5	5	0
g – 4	5	-4	1
<u>6</u> – g	-3	6	1
<mark>5</mark> – g	-2	5	0

- Assessments: $\underline{P}(f) = 5$, $\underline{P}(g) = 4$, $\overline{P}(g) = ??$
- None of the rows are strictly negative, so no sure loss
- Compare the two assessments of $\overline{P}(g)$
 - f-5 is desirable by assumption

$$f - 5 \le 5 - g$$

- so 5 g is desirable
- then $\overline{\mathsf{P}}(g) = 6$ doesn't make sense

Theorem.

If \mathcal{K} is a linear space, then a lower prevision $\underline{P}: \mathcal{K} \to \mathbb{R}$ is *coherent* iff Properties 1–3 below hold:

- $\underline{P}(f) \geq \inf_{x} f(x) \text{ for all } f \in \mathcal{K}$
- **2** $\underline{P}(\alpha f) = \alpha \underline{P}(f)$ for all $f \in \mathcal{K}$ and all $\alpha > 0$
- $\underline{\mathbf{3}} \ \underline{\mathbf{P}}(f+g) \geq \underline{\mathbf{P}}(f) + \underline{\mathbf{P}}(g) \text{ for all } f,g \in \mathcal{K}$
- Relatively simple set of necessary & sufficient conditions
- Application:
 - Claim: lower prevision induced by a belief function is coherent
 - Recall that the Choquet integral is

$$\underline{\mathsf{P}}(f) = \sum_{A} m(A) \left\{ \min_{x \in A} f(x) \right\}$$

Theorem.

If $\underline{P}: \mathcal{K} \to \mathbb{R}$ is *coherent*, then, e.g.,

$$\underline{\mathsf{P}}\{\alpha f + (1-\alpha)g\} \ge \alpha \underline{\mathsf{P}}(f) + (1-\alpha)\underline{\mathsf{P}}(g)$$

$$|\underline{\mathsf{P}}(f) - \underline{\mathsf{P}}(g)| \le \overline{\mathsf{P}}(|f - g|)$$

<u>P</u> is continuous (wrt the topology of uniform convergence)

Theorem.

Suppose that \underline{P}^{λ} is a coherent lower prevision on \mathcal{K} for each $\lambda \in \Lambda$. Then the lower prevision \underline{P}^{inf} , given by

$$\underline{\mathbf{P}}^{\inf}(f) = \inf_{\lambda \in \Lambda} \underline{\mathbf{P}}^{\lambda}(f), \quad f \in \mathcal{K},$$

is coherent too

Sets of previsions

Recall from our discussion of coherent *lower probabilities*

- coherent iff $\underline{P}(A) = \inf_{P \in \mathscr{C}(\underline{P})} P(A)$ for all A
- so \underline{P} and $\mathscr{C}(\underline{P})$ are equivalent
- Similar results for coherent *lower previsions*
- Define $\mathscr{C}(\underline{P}) = \{ \text{previsions } P: P(f) \ge \underline{P}(f) \text{ for all } f \in \mathcal{K} \}$

Theorem.

- <u>P</u> is coherent iff it's the lower envelope of $\mathscr{C}(\underline{P})$
- If \underline{P} is coherent, then $\mathscr{C}(\underline{P})$ is "compact" and convex
- If *P* is a "compact" and convex collection of previsions, then its lower envelop is a coherent lower prevision

- Recall: $\underline{P}(f) = 5$ and $\underline{P}(g) = 4$
- This is a coherent lower prevision on $\mathcal{K} = \{f, g\}^6$

Previsions are determined by probability vectors, the simplex

$$\begin{aligned} \mathscr{C}(\underline{\mathsf{P}}) &= \{\mathsf{P} : \mathsf{P}(\cdot) \geq \underline{\mathsf{P}}(\cdot) \text{ on } \mathcal{K}\} \\ &= \{(p_{\mathcal{B}}, p_{\mathcal{G}}, p_{\mathcal{R}}) : \mathsf{P}(f) \geq 5, \, \mathsf{P}(g) \geq 4\} \\ &= \text{solutions to the system } \begin{cases} 10p_{\mathcal{G}} + 5p_{\mathcal{R}} \geq 5\\ 9p_{\mathcal{B}} + 5p_{\mathcal{R}} \geq 4 \end{cases} \end{aligned}$$

⁶This isn't a linear space, but that's not necessary

$$\mathscr{C}(\underline{P}) = \text{solutions to the system} \begin{cases} 10p_G + 5p_R \ge 5\\ 9p_B + 5p_R \ge 4 \end{cases}$$

Notation: Miranda & De Cooman's "black" is my B, their " $\mathcal{M}(\underline{P})$ " is my $\mathscr{C}(\underline{P})$

- Natural extension
- Conditional lower previsions
- Generalized Bayes rule