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Introduction

Last time we considered a collection of gambles K
Pair of (dual) functionals (P,P) on K:

P(f ) = sup{µ ∈ R : f − µ is desirable}
P(f ) = inf{µ ∈ R : µ− f is desirable}

“Desirability” means that I’d accept the gamble if offered:

I’d buy f from you for anything less than P(f )
I’d sell f to you for anything more than P(f )

P is called the lower prevision

Simple sufficient conditions on P to ensure coherence

...
P(f + g) ≥ P(f ) + P(g)
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Intro, cont.

Relatively easy to check coherence

Holds for lower previsions induced by those imprecise
probabilities we discussed before, e.g., belief functions

Might want to modify P for some reason:

extend its domain from K to a larger K′
or incorporate some newfound knowledge about X

For these, there two such modifications:

natural extension
conditioning / generalized Bayes rule
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Natural extension

Natural extension may be seen as the basic constructive
step in statistical reasoning; it enables us to construct new
previsions from old —Peter Walley

It won’t look like “statistical reasoning” to us, at least not yet

Similar to the extension principle from possibility theory

Mathematical abstraction:

we have P defined on K
“new” gambles are presented, larger domain K′
how to extend P to K′?
i.e., how to evaluate “P(h)” for h ∈ K′ \ K?
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Natural extension, cont.

Key points:

presumably P is coherent, so the extension should be too
extension should agree with P on K

Intuition:

let h be a particular gamble, i.e., one in K′ \ K
µ a generic number
suppose there exists n, αi ≥ 0, fi ∈ K, and δ > 0 s.t.,

inf
x∈X

[
{h(x)− µ} −

n∑
i=1

αi{fi (x)− P(fi ) + δ}
]
≥ 0

summation term is desirable, so h − µ is desirable
so ought to be willing to pay at least µ for h
now find largest such µ = µ(n, αi , fi )...
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Natural extension, cont.

Definition.

The natural extension of P : K → R to K′ ⊇ K is

E(h) = sup
n,αi≥0,fi∈K

inf
x∈X

[
h(x)−

n∑
i=1

αi{fi (x)− P(fi )}
]
, h ∈ K′

Theorem.

Let P be a lower prevision on K and E its natural extension to K′

1 E is the smallest coherent lower prevision that dominates P on K

2 E agrees with P on K iff P is coherent
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Example, cont.1

Experiment:

bag contains blue, green, and red balls
X is the color of a sampled ball, so X = {B,G ,R}

Two gambles in K:

f (B) = 0, f (G ) = 10, f (R) = 5
g(B) = 9, g(G ) = 0, g(R) = 5

P(f ) = 5 and P(g) = 4

New gamble: h(B) = 4, h(G ) = 2, h(R) = 3

Lower prevision for h (from that on {f , g})?

1Taken from Miranda & De Cooman, Ch. 2 of Introduction to IP
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Example, cont.

Different cases:

if x = B, then diff = 4− α1(0− 5)− α2(9− 4)
if x = G , then diff = 2− α1(10− 5)− α2(0− 4)
if x = R, then diff = 3− α1(5− 5)− α2(5− 4)

“infx” is the minimum of these three

Induced lower prevision via natural extension is the max over
(α1, α2) of this minimum, i.e.,

E(h) = sup
α1,α2≥0

min{4 + 5α1 − 5α2, 2− 5α1 + 4α2, 3− α2}
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Example, cont.

E(h) = sup
α1,α2≥0

min{4 + 5α1 − 5α2, 2− 5α1 + 4α2, 3− α2}

Supremum is near the origin

Minimum comes from latter
two terms

Attained when two are equal

(α̂1, α̂2) = (0, 0.2)

E(h) = 2.8

α1

α
2

 −
2
0
 

 −
1
8
 

 −
1
8
 

 −
1
6
 

 −
1
6
 

 −
1
4
 

 −
1
4
 

 −
1
2
 

 −
1
2
 

 −
1
0
 

 −
1
0
 

 −
8
 

 −
8
 

 −
8
 

 −
8
 

 −
8
 

 −
6
 

 −
6
 

 −
4
 

 −
4
 

 −
2
 

 −
2
 

 0 

 2 

0 1 2 3 4 5

0
1

2
3

4
5

10 / 18



Conditional lower previsions

There’s a lot involved in this theory2

I’m just going to wave my hands at a specific part

Assessments about X are translated into a lower prevision P

Then we learn that X ∈ B

How do we update P in light of this new info?

This update is a conditional lower prevision

2Chapter 2.3 in Intro to IP barely touches all that’s in Walley’s book
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Conditional lower previsions, cont.

Let B = {B1,B2, . . .} be a partition of X
For any B ∈ B, let

P(f | B) = sup buying price for f after learning B occurred

LHS is just a symbol for the RHS

RHS is a judgment made by us/agent
question is how to make judgments in a “coherent” way

What does “coherence” mean in this context?

Notation: P(f | B) =
∑

B∈B 1B P(f | B)
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Conditional lower previsions, cont.

In this context, there are various notions of coherence

Collection {P(· | B) : B ∈ B} are called separately coherent if

each P(· | B) is coherent like in previous lecture
P(1B | B) = 1 for each B

Alternatively, let’s consider the relationship between
conditional and unconditional lower previsions

The details of joint coherence are too technical for me to
present here in a comprehensible way3

This notion is important so I’m going to focus on a (overly?)
simplified version...

3See Walley, Ch. 6.5, and Miranda & De Cooman, Sec. 2.3.3
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Conditional lower previsions, cont.

Let’s say P(· | ·) and P(·) are jointly coherent4 if

inf
B∈B

P(f | B) ≤ P(f ), f in domain K

Similar condition for upper previsions using conjugacy

Intuition:

suppose condition fails
then there exists f with P(f | B) > P(f ) for all B
so I’ll pay strictly more for f after B is revealed than before,
no matter which B it is
therefore, my original P(f ) must be too low

If original assessments are satisfactory, then the goal is to
define so that joint coherence holds

4This is only half of the definition, see (C8) in Walley, Ch. 6.5.2
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Generalized Bayes rule

Recall that coherent lower previsions correspond to lower
envelopes of (closed and convex) sets of previsions

Intuition:

if we had a prevision to start, then we’d update in a coherent
way by applying conditional probability/expectation
original P determines a set of previsions
just get conditional previsions for each one
then define conditional lower prevision as the lower envelope

This intuition can be made formal

Corresponds to the so-called generalized Bayes rule
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Generalized Bayes rule, cont.

Theorem.

Suppose that P(B) > 0. Then the generalized Bayes rule is

P(f | B) = inf
{P(1B f )

P(B)
: P ∈ C (P)

}

This is a consequence of (the full version of) joint coherence,
provided that P(B) > 0

That is, (full-blown) joint coherence determines the form of
the conditional prevision in this case

With more care, the “P(B) > 0” condition can be relaxed
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Generalized Bayes rule, cont.

There are immediate statistical implications

Suppose X = (Y ,Θ) ∈ Y× T, data–parameter pair

Lower prevision for X might be based on

a (precise) model for Y , given Θ = θ
an imprecise prior prevision for Θ

B = {{y} × T : y ∈ Y} based on realizations of Y

All we have to do is apply Bayes’s rule to each prevision that’s
compatible with the specified P for (Y ,Θ)5

Separate and joint coherence

This is the context I’m working in now,6 developing an
efficient alternative to generalized Bayes

5See Ch. 7 of Intro to IP
6e.g., http://arxiv.org/abs/2203.06703
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Next lecture

Comparison of Dempster’s & generalized Bayes rules

Dilation & contraction, connection to sure-loss/incoherence

Statistical perspectives

...

Based largely on Gong & Meng (2021 Stat Sci)7

7https://ruobingong.github.io/files/GongMeng2021_StatSci.pdf
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