ST790 — Fall 2022 Imprecise-Probabilistic Foundations of Statistics

Ryan Martin North Carolina State University www4.stat.ncsu.edu/~rmartin

Week 06b

- Natural extension
- Conditional lower previsions
- Generalized Bayes rule

Introduction

- Last time we considered a collection of gambles \mathcal{K}
- Pair of (dual) functionals $(\underline{P}, \overline{P})$ on \mathcal{K} :

$$\underline{P}(f) = \sup\{\mu \in \mathbb{R} : f - \mu \text{ is desirable}\}\$$
$$\overline{P}(f) = \inf\{\mu \in \mathbb{R} : \mu - f \text{ is desirable}\}\$$

• "Desirability" means that I'd accept the gamble if offered:

- I'd buy f from you for anything less than $\underline{P}(f)$
- I'd sell f to you for anything more than $\overline{P}(f)$
- <u>P</u> is called the *lower prevision*
- Simple sufficient conditions on \underline{P} to ensure coherence

$$\underline{P}(f+g) \geq \underline{P}(f) + \underline{P}(g)$$

- Relatively easy to check coherence
- Holds for lower previsions induced by those imprecise probabilities we discussed before, e.g., belief functions
- Might want to modify <u>P</u> for some reason:
 - \blacksquare extend its domain from ${\cal K}$ to a larger ${\cal K}'$
 - or incorporate some newfound knowledge about X
- For these, there two such modifications:
 - natural extension
 - conditioning / generalized Bayes rule

Natural extension may be seen as the basic constructive step in statistical reasoning; it enables us to construct new previsions from old —Peter Walley

- It won't look like "statistical reasoning" to us, at least not yet
- Similar to the *extension principle* from possibility theory
- Mathematical abstraction:
 - we have \underline{P} defined on \mathcal{K}
 - "new" gambles are presented, larger domain \mathcal{K}'
 - how to extend \underline{P} to \mathcal{K}' ?
 - i.e., how to evaluate " $\underline{P}(h)$ " for $h \in \mathcal{K}' \setminus \mathcal{K}$?

- Key points:
 - presumably \underline{P} is coherent, so the extension should be too
 - extension should agree with \underline{P} on \mathcal{K}
- Intuition:
 - let *h* be a particular gamble, i.e., one in $\mathcal{K}' \setminus \mathcal{K}$
 - μ a generic number
 - suppose there exists $n, \alpha_i \geq 0, f_i \in \mathcal{K}$, and $\delta > 0$ s.t.,

$$\inf_{x\in\mathbb{X}}\Big[\{h(x)-\mu\}-\sum_{i=1}^n\alpha_i\{f_i(x)-\underline{\mathsf{P}}(f_i)+\delta\}\Big]\geq 0$$

summation term is desirable, so h - μ is desirable
so ought to be willing to pay at least μ for h
now find largest such μ = μ(n, α_i, f_i)...

Definition.

The natural extension of $\underline{P} : \mathcal{K} \to \mathbb{R}$ to $\mathcal{K}' \supseteq \mathcal{K}$ is

$$\underline{\mathsf{E}}(h) = \sup_{n,\alpha_i \ge 0, f_i \in \mathcal{K}} \inf_{x \in \mathbb{X}} \Big[h(x) - \sum_{i=1}^n \alpha_i \{ f_i(x) - \underline{\mathsf{P}}(f_i) \} \Big], \quad h \in \mathcal{K}'$$

Theorem.

Let \underline{P} be a lower prevision on \mathcal{K} and \underline{E} its natural extension to \mathcal{K}'

1 $\underline{\mathsf{E}}$ is the smallest coherent lower prevision that dominates $\underline{\mathsf{P}}$ on \mathcal{K}

2 <u>E</u> agrees with <u>P</u> on \mathcal{K} iff <u>P</u> is coherent

Experiment:

- bag contains blue, green, and red balls
- X is the color of a sampled ball, so $\mathbb{X} = \{B, G, R\}$
- Two gambles in \mathcal{K} :
 - f(B) = 0, f(G) = 10, f(R) = 5• g(B) = 9, g(G) = 0, g(R) = 5
- $\underline{P}(f) = 5$ and $\underline{P}(g) = 4$
- New gamble: h(B) = 4, h(G) = 2, h(R) = 3
- Lower prevision for *h* (from that on {*f*,*g*})?

¹Taken from Miranda & De Cooman, Ch. 2 of Introduction to IP

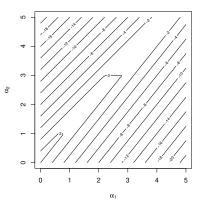
Different cases:

- if x = B, then diff $= 4 \alpha_1(0-5) \alpha_2(9-4)$ • if x = G, then diff $= 2 - \alpha_1(10-5) - \alpha_2(0-4)$
- if x = R, then diff $= 3 \alpha_1(5-5) \alpha_2(5-4)$
- "inf_x" is the minimum of these three
- Induced lower prevision via natural extension is the max over (α₁, α₂) of this minimum, i.e.,

$$\underline{\mathsf{E}}(h) = \sup_{\alpha_1, \alpha_2 \ge 0} \min\{4 + 5\alpha_1 - 5\alpha_2, 2 - 5\alpha_1 + 4\alpha_2, 3 - \alpha_2\}$$

$$\underline{\mathsf{E}}(h) = \sup_{\alpha_1, \alpha_2 \ge 0} \min\{4 + 5\alpha_1 - 5\alpha_2, 2 - 5\alpha_1 + 4\alpha_2, 3 - \alpha_2\}$$

- Supremum is near the origin
- Minimum comes from latter two terms
- Attained when two are equal
- ($\hat{\alpha}_1, \hat{\alpha}_2$) = (0, 0.2)
- <u>E</u>(*h*) = 2.8



- There's a lot involved in this theory²
- I'm just going to wave my hands at a specific part
- Assessments about X are translated into a lower prevision \underline{P}
- Then we learn that $X \in B$
- How do we update <u>P</u> in light of this new info?
- This update is a conditional lower prevision

²Chapter 2.3 in Intro to IP barely touches all that's in Walley's book

- Let $\mathcal{B} = \{B_1, B_2, \ldots\}$ be a partition of \mathbb{X}
- For any $B \in \mathcal{B}$, let

 $\underline{P}(f \mid B) =$ sup buying price for f after learning B occurred

- LHS is just a *symbol* for the RHS
 - RHS is a judgment made by us/agent
 - question is how to make judgments in a "coherent" way
- What does "coherence" mean in this context?
- Notation: $\underline{P}(f \mid B) = \sum_{B \in B} 1_B \underline{P}(f \mid B)$

Conditional lower previsions, cont.

- In this context, there are various notions of coherence
- Collection $\{\underline{P}(\cdot \mid B) : B \in B\}$ are called *separately coherent* if
 - each $\underline{P}(\cdot \mid B)$ is coherent like in previous lecture
 - $\underline{P}(1_B \mid B) = 1$ for each B
- Alternatively, let's consider the relationship between conditional and unconditional lower previsions
- The details of *joint coherence* are too technical for me to present here in a comprehensible way³
- This notion is important so I'm going to focus on a (overly?) simplified version...

³See Walley, Ch. 6.5, and Miranda & De Cooman, Sec. 2.3.3

• Let's say $\underline{P}(\cdot \mid \cdot)$ and $\underline{P}(\cdot)$ are *jointly coherent*⁴ if

 $\inf_{B \in \mathcal{B}} \underline{P}(f \mid B) \leq \underline{P}(f), \quad f \text{ in domain } \mathcal{K}$

- Similar condition for upper previsions using conjugacy
- Intuition:
 - suppose condition fails
 - then there exists f with $\underline{P}(f \mid B) > \underline{P}(f)$ for all B
 - so I'll pay strictly more for f after B is revealed than before, no matter which B it is
 - therefore, my original $\underline{P}(f)$ must be too low
- If original assessments are satisfactory, then the goal is to define so that joint coherence holds

⁴This is only half of the definition, see (C8) in Walley, Ch. 6.5.2

- Recall that coherent lower previsions correspond to lower envelopes of (closed and convex) sets of previsions
- Intuition:
 - if we had a prevision to start, then we'd update in a coherent way by applying conditional probability/expectation
 - original \underline{P} determines a set of previsions
 - just get conditional previsions for each one
 - then define conditional lower prevision as the lower envelope
- This intuition can be made formal
- Corresponds to the so-called *generalized Bayes rule*

Theorem.

Suppose that $\underline{P}(B) > 0$. Then the generalized Bayes rule is

$$\underline{\mathsf{P}}(f \mid B) = \inf \left\{ \frac{\mathsf{P}(1_B f)}{\mathsf{P}(B)} : \mathsf{P} \in \mathscr{C}(\underline{\mathsf{P}}) \right\}$$

- This is a consequence of (the full version of) joint coherence, provided that <u>P</u>(B) > 0
- That is, (full-blown) joint coherence determines the form of the conditional prevision in this case
- With more care, the " $\underline{P}(B) > 0$ " condition can be relaxed

Generalized Bayes rule, cont.

- There are immediate statistical implications
- Suppose $X = (Y, \Theta) \in \mathbb{Y} \times \mathbb{T}$, data-parameter pair
- Lower prevision for X might be based on
 - a (precise) model for Y, given $\Theta = \theta$
 - an imprecise prior prevision for Θ
- $\mathcal{B} = \{\{y\} \times \mathbb{T} : y \in \mathbb{Y}\}$ based on realizations of Y
- All we have to do is apply Bayes's rule to each prevision that's compatible with the specified <u>P</u> for (Y, Θ)⁵
- Separate and joint coherence
- This is the context I'm working in now,⁶ developing an efficient alternative to generalized Bayes

⁵See Ch. 7 of *Intro to IP*

⁶e.g., http://arxiv.org/abs/2203.06703

...

- Comparison of Dempster's & generalized Bayes rules
- Dilation & contraction, connection to sure-loss/incoherence
- Statistical perspectives

Based largely on Gong & Meng (2021 Stat Sci)⁷

⁷https://ruobingong.github.io/files/GongMeng2021_StatSci.pdf