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1 Introduction

When it comes to the foundations of statistics, there are still lots of unanswered questions.
One thing I think is relatively safe to say is that, if one of the currently dominant schools of
thought—Bayesian or frequentist—were objectively correct, then that fact would’ve been
demonstrated by now. It’s most likely that both frequentist and Bayes are correct but
only in certain cases/senses, so, therefore, neither is correct in the big-picture sense that
we’re considering. If the goal is to blend the uncertainty quantification aspect of Bayesian
inference with the calibration and error rate control properties offered by frequentist
methods, then something different is needed. The inferential model (IM) framework that
I’ve developed with Chuanhai Liu and others is, I think, a strong contender for being the
“something different” that can meet the community’s needs.

The IM framework differs fundamentally from other proposals because it explicitly
works in the domain of imprecise probability as opposed to the traditional (precise)
probability theory we learn as students. My view is that this imprecision is necessary to
achieve the goals so, rather than downplay this aspect to avoid the inevitable criticism,
I’ve ramped up my efforts recently to shed even more light on it. My hope was that,
if I draw attention to it, perhaps even challenge those who have differing views, then
they’d feel obligated to try and prove me wrong. It’s through engaging in this critical
back-and-forth that progress can bes be made. Unfortunately, I think most have ignored
my challenges. So I was delighted to learn that Professors Cui and Hannig have not
ignored me, and that they’ve offered their own perspectives on how IMs relate to fiducial
and other more traditional forms of probabilistic uncertainty quantification.

What follows is my reaction to the results and conclusions of their paper (Cui and
Hannig 2022). I can’t say that my reaction is positive, but not because their perspective
isn’t interesting or because they’ve done something wrong. My feeling is that there’s a
general misunderstanding of what IMs are aiming to achieve. So, in the spirit of having
an open dialog that can lead to real progress, I offer the detailed comments below. I
sincerely hope that this is just the start of a conversation.
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2 Main comments

Section 2. Proposition 2.1 states that, when the random set S is nested, the IM’s lower
and upper probability output, i.e., bely(·) and ply(·), are such that, for every A, either
bely(A) = 0 or ply(A) = 1. This is a general fact that applies to all possibility measures1

or, equivalently, consonant belief functions; it has nothing specifically to do with IMs.
The connection to IMs is made through the choice to use a nested random set S. The
authors later argue that the choice of nested random sets is, in some sense, “right,” so I
find their criticism of IMs based on the above fact to be both contradictory to claims they
make later and, more importantly, without warrant. I’ll have more to say below about
the nested random set stuff, but here I’ll explain why I think the authors’ IM-critical
conclusion is without warrant.

1. Based on the above result, the authors claim that the gap, ply(A)−bely(A), between
the two is “perhaps too large.” That claim is based on an implicit comparison, so my
question is: “too large” compared to what? My guess is the authors are interpreting
the pair {bely(A), ply(A)} as bounds for some “true y-dependent probability of
A,” in which case a wide interval is arguably less informative than a narrow one.
However, no “true y-dependent probability of A” exists, so bely(A) and ply(A)
are not to be interpreted as bounds for such a quantity. I understand that the
terminology “lower” and “upper probability” (which isn’t mine) can be misleading,
so I’ve recently tried to explain this different to avoid confusion.2 Anyway, when the
authors state “at most one of the probability bounds (bely(A), ply(A)) provides any
useful information,” their conclusion is (basically) correct, but the interpretation is
wrong: the point is that the IM output {bely(·), ply(·)} is the pair, not bely and ply as
separate pieces, so if you focus on one and ignore the other, then some information
is expected to be lost.

2. It can also be argued that the phenomenon highlighted in Proposition 2.1 is desir-
able, or at least not bad. In the present setting, there is some value (or values) of θ
that the data specifically points to. These are the values we tend to choose as esti-
mates of θ based on data y. For concreteness, let θ̂y denote the maximum likelihood
estimator and consider testing hypotheses H0 : θ ∈ A using the usual likelihood
ratio test. Mathematically, there is no significance level at which we could reject
H0 when the A in question contains θ̂y. If one aims to quantify uncertainty about
θ, given y, in some probabilistic or distributional kind of way, while simultaneously
being consistent with this intuition coming from the behavior of the likelihood ratio
test, how else could one do it other than having ply(A) = 1 for all A 3 θ̂y? This
makes perfect sense to me, as it did to Shafer (1976, Ch. 10–11), so I don’t agree
with Cui & Hannig’s conclusion that the phenomenon described in Proposition 2.1
should be interpreted negatively or as a sign of inefficiency in the IM.

1The earliest mention of this fact that I’m aware of is in Shackle (1961, p. 74), which pre-dates the
work of Dempster and Shafer on the topic.

2I’ve recently been describing the IM’s lower and upper probabilities as lower and upper bounds on
the prices one would be willing to pay for certain bets. The advantage of this interpretation is that it’s
easier to see that there’s no “objectively correct price” for which these are intended to bound.
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Lemma 2.2 in the present manuscript looks very similar, if not virtually the same,
as Theorem 4.3 in Martin and Liu (2015). Indeed, Theorem 4.3 in the book is precisely
why our IM developments always focus on the case of nested random sets: that choice
we made was not about convenience or being compelled by the consonance-encouraging
arguments given by Shackle or Shafer, it’s about efficiency for us. That there’s some
overlap between the authors’ results and ours doesn’t mean the former aren’t interesting,
but I think the authors should comment on if the conclusions here are different than those
in the book and, if so, then how.

Section 3. First, Theorems 3.1 and 3.2 in the paper are very closely related to the
results in Proposition 4.1 and Theorem 4.4 in Martin and Liu (2015). There are some
differences, however, the main one being that our discussion of “fiducial” in the book
centered around the classical version of Fisher, Dempster, and others. The authors’
generalized fiducial framework is different, of course, but it’s not clear to me how this
affects the details of the present analysis. This would help a lot if the authors could explain
here how the generalized nature of their fiducial framework distinguishes their results from
those in the book. In Theorem 3.2 in particular, we get virtually the same conclusion in
Theorem 4.4 in the book, but only for certain kinds of assertions. What’s different about
the analysis here that allows for a more general conclusion? Is it the generalized nature
of the fiducial formulation, just a more sophisticated analysis, or something else?

I have a few issues with the authors’ paragraph following the proof of their Theo-
rem 3.2. Each is relatively short, so I’ll just list them.

1. The statement “the bound can be achieved for any A using some random set S” is
technically correct, but the crucial fact that the random set S = SA that achieves
the bound would generally depend on A gets swept under the rug. By not empha-
sizing this point, the authors give the impression that it’s possible to get a valid
IM that agrees with the fiducial distribution, which is not true. The IM achieves
its desirable properties with a fixed random set S, so if you have to break the valid
IM by introducing assertion-dependent random sets that ruin these properties, then
that’s neither a shortcoming of the IM nor a selling point for fiducial.

2. Again, “beliefs are perhaps too small and plausibilities too high” is not a sign of
the IM being inefficient. To say “too small” or “too high” requires a comparison
to something else that achieves the same validity properties, but there’s nothing to
compare to, at least not yet.

3. This statement about “data snooping” is weird. Who said anything about data
snooping, what motivated making such a claim? This has nothing to do with
IMs—tailoring the choice of method based on peeking at the data almost always
ruins whatever frequentist properties the method satisfies without tailoring.

To conclude my discussion of this section of the paper, I have one comment and one
question concerning the result in Theorem 3.3.

1. The first part of the theorem is not surprising. The IM output is determined by
the distribution of a nested, data-dependent random set Θy(S), which depends
implicitly on the statistical model and the association. To know the distribution
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of Θy(S) amounts to knowing the sets on which it’s support and the probabilities
assigned to those sets. These probabilities are determined by the validity condition,
as the authors have observed, so then all that’s left is knowing the support. In
other words, the IM output ought to be determined by a collection of nested, data-
dependent subsets of Θ. So the fact that what Cui & Hannig refer to as principle
assertions “carry all the information available in the IM” is not a surprise and not
a criticism of the IM (if that’s how the authors intended it).

Incidentally, the “best” random set S seems to be that analyzed in Theorem 4.1 of
Martin and Liu (2015), which is entirely determined by its support (and other fea-
tures of the problem which are generally taken as given). So if S is itself determined
by a nested collection of subsets, then Θy(S) clearly would be too.

2. About the second part of the theorem, on the one hand, of course the sets Aα,y
defined there depend on the IM’s choice of S. On the other hand, I don’t see any
obvious reason why the fiducial distribution would depend on S. Then the theorem
states that those principle assertions (that depend on S) also effectively determine
(a version of) the fiducial distribution. Does that mean the choice between “different
versions” of the fiducial distribution is more-or-less equivalent the IM’s choice of
S? Furthermore, if the fiducial distribution is effectively determined by the IM, but
lacks the strong validity property of the latter, then isn’t the appropriate conclusion
that the fiducial distribution is a sort of “quick and dirty” IM?

Section 4. A confidence curve (CC) is equivalent to a collection of confidence regions,
so it offers nothing more than what’s offered by the set of confidence regions associated
with it. That is, without introducing more structure, they can only answer questions
that can be answered with confidence regions. If one wants to get more from a CC, e.g.,
like the kind of uncertainty quantification that I’m after, then this additional structure
needs to be spelled out. I did this in Martin (2021a).

In particular, Cui & Hannig’s Lemma 4.1 should be compared to Theorem 3 in Martin
(2021a). There I also provide a detailed discussion of how confidence distributions are
related to IM; see, also, Martin et al. (2021). Furthermore, Theorem 4.1 in Cui &
Hannig should be compared to Theorem 6 in Martin (2021a); I also do something similar
for tests, not just for confidence regions, and I allow for the possibility that the given
test/confidence region is only for a feature of θ, not for θ in its entirety. Furthermore, I
think Cui & Hannig’s Theorem 4.2 is saying basically the same thing as my Theorem 6
mentioned above. I can’t follow the definition of what they call cc′y—what’s the infimum
taken with respect to?—but my result also shows how efficiency can be gained compared
to the original confidence regions through the IM construction. I also use that potential
efficiency gain to improve upon some existing methods developed recently for some non-
trivial problems (Martin 2021a, Sec. 8–9).

To follow up on an earlier point, but in more detail, there’s a crucial issue that’s
being entirely overlooked in this paper—the fiducial, CC, and IM calculi. For example,
given a CC for θ, how does one get a CC for φ = φ(θ)? Example 2 in the paper is a
good illustration of this: one can write CCs for µx, for µy, and even for (µx, µy), but
the CC theory doesn’t say how you could get the CC for µx/µy from these; in fact, as
far as I know, the theory says don’t even try to do so, because it doesn’t work. To be
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clear, given a CD for θ, the marginal distribution for φ = φ(θ) obtained by following
the probability calculus is not generally a CD for φ. This is why the CC presented in
Example 2 for µx/µy is constructed separate from the CC for (µx, µy) rather than derived
from it. There is a calculus one can use for manipulating CCs/CDs to get conclusions that
aren’t immediately available from the given confidence regions, e.g., marginal inference,
but it’s not the probability calculus. As I show in Martin (2021a), the calculus you
need is the possibility calculus that IMs use explicitly. So, it’s wrong to interpret the
result in Theorem 4.1 of this paper, or Theorem 6 in Martin (2021a), as saying that IMs
can be understood/viewed as CCs; instead, since IMs provide a detailed, mathematical
prescription for how to carry out valid uncertainty quantification, these results actually
say that the IM framework is the right way to use CCs.

To summarize, an attempt to connect IMs to fiducial distributions, CCs, etc. is neces-
sarily incomplete if the calculus that would be used to manipulate them isn’t considered.
A CC on its own is equivalent to a collection of confidence regions, so it contributes
nothing beyond what is contained in the confidence regions. Similarly, a fiducial distri-
bution evaluated at various assertions also isn’t especially meaningful because this can’t
be manipulated in a way that provides a complete quantification of uncertainty about θ
and its relevant features. Upon considering the manipulation of these objects, it becomes
almost immediately clear that the probability calculus won’t do. The possibility calculus
works in the sense of preserving the validity/confidence properties, but then one is basing
inference on the IM, not really the CC. If IMs already do everything that one can hope
for in the context of probabilistic uncertainty quantification in statistical inference, and
if imprecise probability considerations are inevitable, then why the resistance to IMs?

Section 5. I disagree with almost all of the points/conclusions made in this section.
Let me go through each of them line-by-line.

1. Line 1: “the key concept of validity is innate to CCs.” I don’t see how this could
be true when CCs only allow you to read off confidence regions. IMs, on the other
hand, offer validity guarantees at every assertion, including marginal assertions
about φ = φ(θ). To make a CC similarly valid, one needs to view it through the
lens of possibility theory, but that’s not “innate.” If anything, the conclusion is
that if you want a CC that’s valid, then you need to use an IM.

2. Line 2: “IMs are valid when they produce valid CCs.” IMs are always valid and,
in particular, they produce CCs from which genuine confidence regions can be read
off and, moreover, by explicitly identifying that CC as a possibility contour, one
immediately knows how this should be manipulated for valid marginal inference,
etc.; see Martin (2021a) and Martin et al. (2021).

3. Line 4: “the big advantage of IMs...” IMs are aiming to do more than just construct
confidence regions. The objective is valid probabilistic uncertainty quantification
about θ which, among other things, includes the construction of confidence regions.

4. Line 6: “main link between IMs and CCs.” Even if you have the sets Aα,y, the CC
theory doesn’t tell you how to do anything besides read off the sets Aα,y. So I agree
that there’s a link, but it only goes in one direction: IM → CC but CC 6→ IM.
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5. Line 11: “IM answers an old question, when are fiducial credible intervals confidence
intervals?” I don’t think that’s what IMs do, but Pitman (1957) talks about this
briefly (and points to an earlier paper with details). I’ll have a few other things
to say about this below. To me, the question isn’t about confidence regions at
all, at least not directly. We have lots of different ways to construct approximate
confidence regions, the question is how to do more with that construction, how
to get a more complete uncertainty quantification for θ (and its relevant features)
while retaining the frequentist-style calibration properties.

6. Line 27: “IMs can be viewed as fiducial distribution based confidence curves.”
While I’m not entirely sure what the authors mean by this, I’m inclined to 100%
disagree. Again, IMs are about valid uncertainty quantification, not just about
confidence regions. If all that is desired is a confidence region, then there’s no point
in any of these considerations, there are so many classical strategies that can be
used to directly get a confidence region. These considerations are relevant only
because the objective is to do more than construct confidence regions. The results
in this paper—and in Martin (2021a)—actually say that, to achieve more with
a CC/CD, one needs the possibility-theoretic perspective that the IM explicitly
brings. The more appropriate take-away message, in my view, is that “CCs are
quick and dirty IMs”—they’re summaries that perform one specific (and important)
task, but don’t fully achieve the uncertainty quantification objective without the
possibility calculus, which is clearly justified through the underlying IM.

3 Some relatively minor things

1. Clearly I don’t especially like “demystifying” in the title. It suggests that (a) my
explanations haven’t made the developments clear and (b) that the connection to
fiducial inference will make it more clear, both of which I personally disagree with.
I’d prefer if the title could say more specifically what the paper contributes, but
the authors are free to do as they please.

2. Page 7, line 3: θy(S) should be Θy(S).

3. Page 7, line 8: The notion of “measurable” being mentioned here is with respect
to the random set S, not y. This is obviously much more complicated and, if the
authors choose to bring this up, then I think some explanation of what that actually
means should be given. I’ve generally chosen not to bring it up in my papers because
it’s a distraction and not in the spirit of “demystifying.” A related point is that it
might help the reader if the authors somehow make clear that “P” in Equation (4)
and elsewhere is with respect to the distribution of S, not y. In my writing on the
subject, I’ve chosen to make explicit in the notation which quantity is random in
each probability statement, but the authors are free to adopt a different style.

4. Concerning the validity property in Equation (5), I’d suggest that the authors
emphasize more the “for all A” part of it. For example, as stated, if they refer to
Equation (5) as the definition of validity, then it doesn’t include “for all A,” so the
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reader could get the impression that the validity property achieved by the IM is for
a particular A when, in fact, it’s achieved for all A.

5. It’s just a matter of taste I suppose, but I had hoped to see an example other than
one that appeared in the very first IM publication. This is a nice example, due to its
simplicity, but it’s arguably too simple to really communicate what’s happening. It
could also be nice to see a non-trivial example that compares the IM and generalized
fiducial solutions, e.g., one that distinguishes the validity property achieved by the
IM from the confidence-related properties achieved by fiducial. Having an example
where the sets Aα,y are written explicitly could also be helpful to the reader.

6. Finally, and this might only be relevant to me, but the presentation of IM-related
material here is based entirely on work that was done roughly 10 years ago. I’ve
done a lot of work in the last 3+ years or so (e.g., Cella and Martin 2021a,b,
2022; Liu and Martin 2021; Martin 2019, 2021a,b, 2022) to modernize, simplify,
and clarify some of those details that the authors aim to “demystify.” I understand
that it might be difficult to keep up with all of these developments, so of course it’s
fine to stick with the older stuff, but at least some references to the more recent
work would be appreciated.

4 Moving forward

To me, the most important fundamental question concerning the relationship between
IMs and Bayes/fiducial/CDs/etc. is the following. The false confidence theorem (Balch
et al. 2019) states that, no matter what kind of data-dependent distribution one uses,
there are always false assertions that will tend to be assigned high posterior probability—
this is an issue about uncertainty quantification, not about confidence regions, etc. This
misalignment of the posterior probability creates a risk for erroneous inference. What
do those problematic assertions look like? This is relevant to the Bayes/fiducial/CD
communities because, if it ends up that these assertions are rather extreme, impractical,
or whatever, then there would be essentially no risk in ignoring false confidence altogether.
Of course, the problematic assertions depend on the context of the problem, so I doubt
that one can say, across the board, there’s no reason for concern; the satellite collision
example in Balch et al. (2019) makes it clear that the class of problematic assertions isn’t
vacuous. Anyway, my point is that we currently have very little understand of what those
problematic assertions look like, which means we don’t understand how great the risk
is. The results from Pitman (1957) I mentioned above seem relevant but so far I’ve had
trouble wrapping my mind around what he shows. I’m obviously interested in showing
that the problematic assertions are plentiful, whereas Bayes/fiducial/CD folks want to
show that they’re rare or extreme. So it seems like the best way to get to an answer
to this question, one way or the other, is for both groups to try. Cui & Hannig have
obviously thought more about generalized fiducial inference than I have, so I wonder if
they have any insights on this question they can share.
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