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Comment: On the History and Limitations of
Probability Updating
Glenn Shafer

Abstract. Gong and Meng show that we can gain insights into classical
paradoxes about conditional probability by acknowledging that apparently
precise probabilities live within a larger world of imprecise probability. They
also show that the notion of updating becomes problematic in this larger
world. A closer look at the historical development of the notion of updat-
ing can give us further insights into its limitations.
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1. A BROADER PERSPECTIVE ON CLASSICAL
PARADOXES

Conditional probability paradoxes, stories in which
P(A|B) does not seem to be a reasonable probability for
A after we learn B , have been with us since the late 19th
century.1 Many of these paradoxes turn on initial proba-
bilities not telling us enough about the relation between
A and the event that we learn B . Many authors have ex-
plained this, but each in their own way, often vociferously
denying the cogency of others’ explanations. No consen-
sus having emerged, the paradoxes endure.

Roubin Gong and Xiao-Li Meng propose a broader per-
spective. Instead of trying to resolve the paradoxes within
standard probability theory, in which we have joint proba-
bilities for all events of interest, they propose that we use
the theory of imprecise probabilities, in which events of
interest may have only upper and lower probabilities and
quantities of interest may have only upper and lower ex-
pected values. The theory of imprecise probabilities not
only generalizes the standard theory but also allows us
to recognize formally the incompleteness of any standard
(a.k.a. “precise”) probability model. We do this by adding
events to the model without adding probabilities for them,
thus obtaining a larger “imprecise” model. As Gong and
Meng put it,

Every precise model is a fully specified mar-
gin nested within a larger, ever-augmentable
model, with extended features not allowed to
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1See Bertrand (1889). Bertrand’s paradoxes have been discussed by
Shafer and Vovk (2006), Gorroochurn (2012) and many others.

enter the scene as the modeler lacks the knowl-
edge to do so precisely.

This allows them to explain the conditional probability
paradoxes this way:

Their narratives imply the existence of a joint
distribution, yet only a subset of marginal in-
formation is precisely specified.

The theory of imprecise probability has flourished for
several decades, but largely outside statistics journals.
Bringing it into the statistical mainstream, as Gong and
Meng have done with this article in Statistical Science, is
a welcome move. As Gong and Meng show, the theory’s
ideas can enrich statisticians’ understanding of longstand-
ing questions within our community. We can also hope
that the critical resources of the statistical community can
add new depth to the theory. Gong and Meng tell us that
dilation, contraction and sure loss “hint at novel types of
information contribution.” Perhaps we need theories of
these novel types.

2. DO ALL EVENTS HAVE NUMERICAL
PROBABILITIES?

The theory of imprecise probabilities says no. Many
events, perhaps most, do not have numerical probabilities.
Is this a new or controversial view?

Certainly it is not new. Before the 18th century, schol-
ars who wrote about degrees of probability seldom sug-
gested that these degrees could ever be put in numerical
form Knebel (2000). Before 1713, when Jacob Bernoulli’s
Ars conjectandi appeared, even expectations in games of
chance were not usually connected with the idea of prob-
ability. Bernoulli made the connection and launched the
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project of finding numerical probabilities not only for
games of chance but also for civil, criminal and business
matters. But Bernoulli did not believe that we can always
find probabilities for a thing and its contrary that add to
one.

Jean Le Rond d’Alembert, the uncontested leader
of French mathematics in his time, was an avowed
skeptic about Bernoulli’s ambition for numerical prob-
abilities. In 1676, the same year the teenage Pierre-
Simon Laplace arrived in Paris seeking his patronage,
d’Alembert published his own views about the art of
conjecture. According to d’Alembert, this art has three
branches (D’Alembert, 1767, Chapter VI):

1. The first branch is games of chance. Here, we can
count equally likely cases and reason about them a pri-
ori.2

2. The second consists of topics such as insurance and
inoculation, where we can learn the number of cases and
their ratios only from experience and only approximately.

3. The third consists of the many topics for which
mathematical demonstration is rare or impossible.
D’Alembert included here physics, history, medicine, the
law and business.

Outside the small world of scholars who specialize in
mathematical probability and its applications, these views
probably found widespread assent when d’Alembert pub-
lished them and may continue to do so today. Over
time, scientists and statisticians may have moved bits of
d’Alembert’s third category into the second or even the
first, but the third still seems very large.

When I began my own study of mathematical statis-
tics in the early 1970s, I took it for granted that only
some events have probabilities. Both R. A. Fisher and An-
drei Kolmogorov had said so explicitly.3 I thought nearly
all statisticians, philosophers and mathematicians agreed.
Today I am not so sure. For decades now, Bayesians have
insisted that a person can supply a personal probability
for anything. As realism has gained ascendancy in philos-
ophy, the claim that anything uncertain has an objective
probability, usually unknown, has also become common.
Many physicists now imagine a universal wave function.
Many mathematical probabilists now imagine the whole
course of the world being described by a single element ω

2D’Alembert was also skeptical about some of this a priori reason-
ing. Can you really know a priori the probability of getting a head
tossing a coin when you are allowed to try twice? As Bernard Bru has
argued, we should hesitate to dismiss d’Alembert’s doubts on this point
as a mere “gambler’s fallacy” (Bru, 1989, 2002).

3Kolmogorov’s most explicit statement that not every event has a
probability may be in his article on probability in the 1951 edition of
the Great Soviet Encyclopedia (Shafer and Vovk, 2006, p. 50). Fisher
was equally explicit, stating in 1956, for example, that “in some cases
no probability exists” (Fisher, 1956, p. 45).

of a vast probability space �. In this context, I am tempted
to see the increasing popularity of the theory of imprecise
probabilities as a return to d’Alembert’s common sense.

3. MODEL OR JUDGMENT?

As leaders in the “Bayesian, Fiducial and Frequen-
tist” community, Gong and Meng want to transcend the
quarrels between proponents of different interpretations
of probability and different methodologies for statistical
inference. This is visible in their choice of words. They
avoid saying whether the probabilities they discuss, pre-
cise or imprecise, are objective facts or subjective beliefs,
and they make heavy use of the word “model.” The first
two sentences of their article reveal, however, that the
models being studied are akin to neo-Bayesians. They up-
date themselves:

Statistical learning is a process through which
models perform updates in light of new infor-
mation, according to a prespecified set of oper-
ation rules. As new observations arrive, a good
statistical model revises and adapts its uncer-
tainty quantification according to what has just
been observed.

By the end of the article, however, I was wondering
whether these first two sentences were a declaration of
faith or a straw man. Is “judicious judgment” limited to
choosing an updating rule before the fact, incorporating it
into the model, and letting the model do our later think-
ing for us? Or is “judicious judgment” most needed after
something unexpected is observed? I would welcome the
second interpretation and see it as another step back to
common sense.

4. FROM RELATIVE TO CONDITIONAL PROBABILITY

Two centuries before the formula

(1) P(B|A) = P(A and B)

P (A)

became a definition, Abraham de Moivre provided a bet-
ting argument for what became known as “the rule of
compound probability”: the probability of two events both
happening is the probability of the first times the proba-
bility of the second “when the first shall have been con-
sider’d as having happen’d” (de Moivre, 1967, p. 7). As
this formulation reveals, De Moivre did not begin with
a probability measure that gave joint probabilities for all
events he wanted to discuss. Instead he constructed joint
probabilities from simpler ingredients. The probability of
a second event given the first was one of these ingredients.
It was not a “conditional probability”; it was the probabil-
ity of the second event in the new situation in a betting
game. The rule of compound probability remained one
of the basic rules of probability theory until the mid-20th
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century, when mathematical probabilists decided that it
was more convenient to make probability measures their
starting point, thus shifting (1) from being a consequence
of the rule of compound probability to being a definition
of P(·|·).

Nineteenth-century mathematicians sometimes wrote
about “relative probability.” In his popular French text-
book on probability, first published in 1816, Sylvestre-
François Lacroix called the ratio P(A)/(P (A) + P(B))

the probabilité relative of A as compared to B . When
rolling two dice, for example, where there are 6 chances
for getting a 4 and only 3 chances for getting a 4, the prob-
ability of 7 relative to 4 is 2/3 (Lacroix, 1816, pp. 19–20).
We see this same notion of relative probability in Liagre
(1852), Section 16.

It seems that “conditional probability” first appeared in
George Boole’s Laws of Thought (Boole, 1854, Chap-
ter XX, Section 21). A logician, Boole was trying to
make mathematical probability part of logic, and he was
accustomed to using “condition” and “conditional” in
logic. Boole’s used “conditional probability” only once,
however, casually and perhaps even inadvertently, as he
was writing mostly about “conditional events.” In 1887,
in his Metretike, Francis Edgeworth, citing Boole, sys-
tematically called the probability of an effect given a
cause a “conditional probability” (Mirowski, 1994). We
already see the German and Russian equivalents, bedingte
Wahrscheinlichkeit and uslovna� vero�nost�, in the early
20th century (Shafer and Vovk, 2006, p. 6).

In the course of commenting on Boole, Charles Sanders
Peirce wrote, “Let ba denote the frequency of b’s among
the a’s” (Peirce, 1867, p. 255). Because Peirce was iden-
tifying probability with frequency, this could be consid-
ered the first notation for conditional probability. Oth-
ers made other suggestions, mostly independently of each
other. Hugh McColl, independently of Peirce, wrote “The
symbol xa denotes the chance that the statement a is true
on the assumption that the statement a is true” (McColl,
1879/80, 1880/81). Later he used A

B
(MacColl, 1896/97).

Andrei (Markov, 1900) wrote (A,B).
In 1911, John Maynard Keynes introduced what he

called “the fundamental symbol of probability,” A/H , for
the probability of A given H . This symbol became pop-
ular at Cambridge; we see it in books by C. D. Broad
(Broad, 1914, p. 318), John Maynard Keynes (Keynes,
1921, p. 177), and William E. Johnson (Johnson, 1924,
p. 179). To all appearances, Keynes first used the sym-
bol in the 1908 dissertation that grew into his book, and
Johnson popularized it in conversations and lectures.4

4Keynes claimed originality for the symbol in correspondence with
W. H. Macaulay in 1907 (Aldrich, 2020). In his book, he says that
had not been aware of McColl’s earlier notation when he devised
the symbol (Keynes, 1921, p. 177). In a review of Keynes’s book,

In 1901, the German mathematician Felix Hausdorff in-
troduced the symbol PF (E) for what he called the rela-
tive Wahrsheinlichkeit von E, posito F (relative proba-
bility of E given F ). In his view, the absolute probabil-
ity P(E) of an event E is simply the relative probability
PF (E), where F is our current knowledge. This knowl-
edge can change, and Hausdorff mentioned three exam-
ples (Hausdorff, 1901, pp. 154–155):

• When the absolute probability P(E) is a weighted av-
erage of possible objective probabilities, F represents
one of the possible objective probabilities, and we learn
that F is correct, then we change P(E) to PF (E).

• We may learn that there were more possibilities than
we had realized, as when we learn that the geometry of
the world may not be Euclidean. In this case, we shift
from PF (E) to PG(E), where G permits this wider set
of possibilities.

• We may learn that our knowledge F was flatly wrong
and, therefore, shift from PF (E) to PG(E), where G

contradicts F .

Emmanuel Czuber followed Hausdorff’s terminology and
notation in the second edition of his influential textbook,
except that he used WF (E) instead of PF (E) (Czuber,
1908, pp. 44–45). Kolmogorov used PA(B) in his path-
breaking 1933 Grundbegriffe, but he called such a proba-
bility bedingte (conditional), not relative as Hausdorff and
Czuber had done (Kolmogoroff, 1933, p. 206).

Our current notation P(·|·) is apparently due to Harold
Jeffreys. In 1919, Dorothy Wrinch and Jeffreys had used
P(p : q) (Wrinch and Jeffreys, 1919). In 1931, Jeffreys
replaced this with P(p|q), commenting on its advantage
over P(p : q) and notation p/q in a way that makes clear
that he was not aware of any previous use of P(p|q)

(Jeffreys, 1931, p. 31).

5. FROM CONDITIONAL PROBABILITY TO UPDATING

After World War II, mathematicians, statisticians and
philosophers began to take it for granted that the proper
setting for mathematical probability is a probability mea-
sure rather than a collection of probabilities less struc-
tured or structured in some other way. Only then did it
become natural to recast the notion of conditional proba-
bility as an action with probabilities as its object: a statisti-
cian or scientist “conditionalizes” or “conditions” or “up-
dates” the probabilities. This formulation seems to have
slipped unheralded into many minds. The earliest instance
of it I have found is in Estes and Suppes (1957). After em-
phasizing the importance for psychology of the concept of

Broad suggested that Keynes had borrowed the symbol from John-
son (Broad, 1922, p. 78), but Johnson acknowledged Keynes’s priority,
at least in publication. Johnson read Keynes’s dissertation and likely
used Keynes’s symbol subsequently in lectures attended by Broad and
Dorothy Wrinch (Aldrich, 2008, 2020).
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a probability measure (p. 11), Estes and Suppes explained
that “the experimenter may conditionalize the probabili-
ties of reinforcement upon preceding events of the sample
space in whatever manner he pleases” (pp. 20–21). The
use of “update” in this context seems to have appeared
much later, only in the late 1970s.

In the 1960s, A. P. Dempster was writing about his own
rules for or of combination and conditioning and compar-
ing them with Bayesian rules (Dempster, 1967, 1968). In
my 1976 book on the Dempster–Shafer theory (Shafer,
1976), I distinguished between Bayes’s rule of condition-
ing, as I called it, and Bayes’s theorem.

• Bayes’s rule of conditioning says that when you learn
A, you change your probability for B from P(B) to
P(B|A) as given by (1), regardless of the order in
which the events may have happened in the world. I
attributed this rule directly to Bayes because he had
given a betting argument for it, which is erroneous in
my opinion; see Shafer (1982).

• Bayes’s theorem is more specific; it is the Bayesian
rule for changing probabilities for a parameter based
on observations (or, in Laplace’s words, obtaining
probabilities for causes from events). Beginning with
Cournot843 (1843), some authors called this Bayes’s
rule (règle de Bayes in French; Bayesschen Regel in
German); others called it Bayes’s formula or Bayes’s
theorem.5 In English, it was often called the method
of “inverse probability.” Now that (1) is regarded as a
definition, it is more often called a theorem.

The distinction between Bayes’s rule of conditioning (or
updating or conditionalization; see Teller (1973)) and
Bayes’s theorem is now widely made, but it is remains
unfamiliar to many statisticians. Perhaps for this reason,
Gong and Meng blur the distinction, calling

P(A|B) = P(A)
P (B|A)

P (B)

“Bayes rule.” I find this confusing, because when (1) is
treated as a general rule for updating a probability mea-
sure after observing an event, there is no presumption
that the probabilities of the event conditional on all other
events had previously been singled out and calculated.

6. THE IMPLICATIONS OF INSISTING ON A
PROTOCOL

Gong and Meng are kind enough to cite the 1985 article
in which I insisted that Bayesian updating after learning B

is legitimate only in the presence of a protocol that singled

5Bayes’s friend and executor, Richard Price, used the phrase “Mr.
Bayes’s rules” to refer to formulas Bayes had derived for approximat-
ing what we now call posterior and predictive Bayesian probabilities
in the binomial problem (Dale, 1999, pp. 39–40).

out B as one of the things we might learn (Shafer, 1985).
It is only in this case, I argued that De Moivre’s betting
argument and its variants (e.g., de Finetti, 1937, Teller,
1973) justify Bayes’s rule of conditioning and only in this
case that paradox can be avoided. I would like to add to
their discussion an explanation of how I understand the
consequences of insisting on a protocol.

By a protocol, I mean what Joseph L. Doob and later
probabilists have called a filtration. Starting at time 0,
you first learn X1, then X2, etc. In the simple special
case where these variables are all binary and we stop at
fixed time n, we can visualize the protocol as a binary
tree. The sample space � is the set of all paths through
the tree, from time 0 to time n. There are 2n elements
in � and hence 22n

events. But there are exponentially
fewer nodes in the tree—only 2n − 1. But only a node in
the tree can represent what you may have learned at some
point in time. If and when you reach a particular node,
say by observing x1, . . . , xk , your new probability for an
event A will be your original probability “conditioned”
on X1 = x1, . . . ,Xk = xk . But you will never “condition”
on any of the 22n − 2n + 1 events not of this form. So
the notion that you have a methodology that allows you to
“update” when your new information is any subset B of
� is illusory.

A common Bayesian response is that you should of
course condition on everything you have learned, includ-
ing the fact that you learned it. This implies that the ele-
ments of � specify what you will and will not learn at ev-
ery point in time. So the Bayesian view already implicitly
calls for a protocol for how new information may arrive.
In my view, leaving this need for a protocol implicit is
more than an invitation to paradox. It is deceptive. Once
the demand to provide a probability model for your entire
learning process is made explicit, it becomes obvious that
the demand often cannot be satisfied.

Surely we should conclude that models with updating
rules are only one limited set of tools for assessing uncer-
tainty. We also need ideas for evaluating and combining
unanticipated evidence, such as Jacob Bernoulli proposed
in (Bernoulli, 1713, 2006, Part IV, Chapter 3), Dempster
and I proposed in the 1960s and 1970s, and others have
proposed before and since.
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