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Comment: Settle the Unsettling: An
Inferential Models Perspective
Chuanhai Liu and Ryan Martin

Abstract. Here, we demonstrate that the inferential model (IM) framework,
unlike the updating rules that Gong and Meng show to be unreliable, pro-
vides valid and efficient inferences/prediction while not being susceptible to
sure loss. In this sense, the IM framework settles what Gong and Meng char-
acterized as “unsettling.”
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1. INTRODUCTION

Ruobin Gong and Xiao-Li Meng are to be congratu-
lated for their thought-provoking article shedding light on
the paradoxical results that can surface when imprecise or
incompletely-specified models are updated, in light of ob-
served data, using formal rules like Dempster’s and gener-
alized Bayes. With scientific problems becoming increas-
ingly more complex, the idea that models describing the
phenomena under investigation can be precisely specified
is a fantasy, so Gong and Meng’s insights about the effects
of these updating rules are both important and timely.
However, after highlighting a number of cases where the
updates are “unsettling,” they give no recommendations
about which updating rule, if any, is reliable. In some
cases, generalized Bayes seems to be the right choice,
while in others it’s Dempster’s rule. Since we cannot rely
on any of the updating rules to give satisfactory answers
in every problem, apparently our only recourse is to use
“judicious judgment” on a case-by-case basis.

Here, we argue that steps toward settling what’s unset-
tling about these updates can be made by taking a differ-
ent perspective on what a solution to the problem entails.
Gong and Meng make their perspective very clear:

Statistical learning is a process through which
models perform updates in light of new infor-
mation, according to a prespecified set of op-
eration rules.

What is missing from this description is that inferences
drawn based on the updated models must be reliable or
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valid in some specific sense, otherwise, the results are not
useful. So the question is not really about updating be-
liefs but rather, how to ensure that the beliefs data sci-
entists construct for inference and prediction achieve the
desired reliability properties. From this perspective, Gong
and Meng’s goal is overly ambitious: for valid and ef-
ficient inference, rules that update beliefs are not nec-
essary. A less ambitious goal—but still in line with the
priorities of scientists—is to understand what it takes to
construct procedures for allocating beliefs such that in-
ferences drawn are valid and efficient. The first step is to
define what these terms mean, which we do below in Sec-
tion 2. We immediately take comfort in the fact that va-
lidity rules out the troubling sure loss phenomenon, and,
as we show in Section 3, validity and efficiency make it
possible to compare the solutions based on the different
updating rules. Of course, if validity and efficiency are
the goal, then it makes sense to follow a procedure that
is specifically design to achieve these properties. The in-
ferential model (IM) procedure introduced in Martin and
Liu (2013, 2016) is just that, and in Section 4 we describe
this framework and show how it generally leads to better
solutions than those based on the formal updating rules
in Gong and Meng’s examples. The take-away message is
that, by following the validity- and efficiency-focused IM
approach, the “unsettling” phenomena identified by Gong
and Meng can be avoided. Finally, Section 5 concludes
with few topics for future investigation.

2. VALID AND EFFICIENT PREDICTION

The examples in Gong and Meng (2021) are most con-
veniently described as prediction problems, so that is the
perspective we take; all of this can be developed in a sim-
ilar way for inference. To set the scene, let X denote the
observable data and Y ∈ Y the quantity to be predicted.

196

https://imstat.org/journals-and-publications/statistical-science/
https://doi.org/10.1214/21-STS765B
https://doi.org/10.1214/19-STS765
https://www.imstat.org
mailto:chuanhai@purdue.edu
mailto:rgmarti3@ncsu.edu


COMMENT 197

Next, let P denote the probability measure that describes
the joint distribution of (X,Y ), at least partially unknown
or unspecified. As indicated above, we proceed by quan-
tifying uncertainty about Y , given X = x, via a pair of
lower and upper probabilities, denoted by (πx,πx), de-
fined on Y. We refer to the map x �→ (πx,πx) as a
probabilistic predictor, and the user’s degree of belief
in the truthfulness of an assertion A ⊆ Y concerning
the unobserved Y , given X = x, are described by the
pair (πx(A),πx(A)). Note that the probabilistic predic-
tor need not be based on updating a precise or imprecise
probability model.

Since the goal is for the probabilistic predictor to make
reliable predictions, that is, not wrong too often, consider
the following prediction validity property.

DEFINITION (Cella and Martin (2020)). A probabilis-
tic predictor is valid if

(1) P
{
πX(A) ≤ α,Y ∈ A

} ≤ α ∀(A,α,P),

where the probability is with respect to the joint distribu-
tion of (X,Y ) determined by P and “∀” is over all asser-
tions A ⊆ Y, all levels α ∈ [0,1], and all P.

The intuition is that, at least for small α, the data ana-
lyst interprets the event “πX(A) ≤ α” as evidence against
the truthfulness of the assertion A about Y , so the joint
event “πX(A) ≤ α,Y ∈ A” is one where an erroneous
prediction is possible. Then (1) requires that the user be
able to control the frequency of such erroneous predic-
tions. Thanks to the familiar duality between lower and
upper probabilities, a similar condition can be formulated
in terms of πx (Cella and Martin, 2020). To see what con-
dition (1) imposes on the probabilistic predictor, consider
the equivalent expression

(2) E
{
1πX(A)≤αP(Y ∈ A | X)

} ≤ α ∀(A,α,P),

where 1B is the indicator function, E is expectation with
respect to the marginal distribution of X under P, and
P(Y ∈ A | X) is the conditional probability based on
P. Clearly, if πx(A) equals or dominates the condi-
tional probability P(Y ∈ A | x) or the marginal probability
P(Y ∈ A), then (2) holds. This connection between valid-
ity and “dominance” leads to several interesting observa-
tions, as discussed in Cella and Martin (2020).

• Sure loss, the most unsettling of the three phenomena
studied by Gong and Meng, is ruled out by validity, that
is, validity implies no sure loss.

• If the imprecise model is known to contain the true joint
distribution of (X,Y ), like in Gong and Meng’s exam-
ples, then the generalized Bayes solution is valid.

While generalized Bayes provides a strategy to achieve
validity, it is not the only option and often will not be the
best; see below.

Beyond validity, efficiency is important too. Here, we
say that between a pair of valid probabilistic predictors,
with upper probabilities πx and π ′

x , the latter is no less
efficient than the former—with respect to a specified as-
sertion A—if π ′

x(A) ≤ πx(A) for all x. The idea is that
large upper probabilities are trivially valid, so the goal is
to find the smallest possible upper probabilities that sat-
isfy (1) or (2). By the duality between lower and upper
probabilities, similar intuition can be developed for πx .
We’ll not investigate validity or efficiency formally here,
only in the context of two examples in Section 3.

3. GONG AND MENG’S EXAMPLES

3.1 Three Prisoners

Three prisoners—labeled A, B and C—are in custody
and one will be randomly chosen to have their sentence
pardoned; the other two will be executed. Let Y denote
the pardoned prisoner. Prisoner A ask the guard to tell
him which of Prisoners B or C will be executed, and the
guard’s response is the data X. The goal is to predict Y

based on data X. What do validity and efficiency add to
the discussion?

As Gong and Meng argue, the joint distribution for
(X,Y ) is fully determined except for the conditional prob-
ability θ = P(X = B | Y = A). So, for the most relevant
assertion, “Y = A,” the validity condition (2) can be ex-
pressed as

(3) 1πB(A)≤α · θ

3
+ 1πC(A)≤α · 1 − θ

3
≤ α.

As presented in Gong and Meng (see, also, Walley, 1991,
Section 6.4.4), the generalized Bayes solution returns a
probabilistic predictor with

πx(A) = 0 and πx(A) = 1

2
, x ∈ {B, C},

and, for this, it is easy to check that (3) holds. Dempster’s
rule returns a probabilistic predictor with lower and upper
probabilities for “Y = A” equal to 1

2 , for all x. This sat-
isfies (3) at “Y = A,” but not if we consider the comple-
mentary assertion. Indeed, with Dempster’s probabilistic
predictor at the assertion “Y ∈ {B,C},” the validity require-
ment in (3) boils down to

(4) 1 1
2 ≤α

· 2

3
≤ α.

Taking α = 1
2 leads to a contradiction. This is basically

the proof of how sure loss leads to a violation of validity
in general. Similarly, the solution based on the geometric
rule, which also suffers from sure loss in this example, is
invalid.

A closer look at (3) provides some insight as to what
the “most efficient” solution is. If πx(A) = 1

3 for each
x ∈ {B, C}, then (3) would be satisfied, and it would
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be more efficient than the generalized Bayes solution. It
would also be valid since lower probability on the com-
plementary event is 2

3 , as opposed to Dempster’s 1
2 , so it

would not get caught by the trap (4). We will see below
how this “most efficient” solution can be achieved.

3.2 Boxer, Wrestler and Coin

Let Y1 denote the outcome a fair coin flip, with Y2 = 1
and Y1 = 0 corresponding to Heads and Tails, respec-
tively, and let Y2 denote the outcome of the boxer ver-
sus wrestler match, with Y2 = 1 and Y2 = 0 denoting
a boxer and wrestler victory, respectively. The data is
X = |Y1 − Y2|, an indicator that Y1 and Y2 take the same
value. The goal is to predict the outcome of the fight (or
of the coin flip) based on the observed value of X.

Features of the joint distribution of (X,Y ), with Y =
(Y1, Y2), are left unspecified, in particular, the conditional
probabilities

θ1|y1 = P(Y2 = 1 | Y1 = y1), y1 ∈ {0,1}.
This pair θ = (θ1|0, θ1|1) of conditional probabilities can
take any value in [0,1]2. That is, the problem setup does
not rule out the possibility that the fight’s outcome is de-
termined by the coin flip, or that the fight’s outcome is
independent of the coin and predetermined.

As above, let us start by specializing the validity con-
dition to the present example. That is, if πx(1) is the
probabilistic predictor’s upper probability at the assertion
“Y2 = 1,” that is, a boxer victory, then (2) requires

1

2
{1π0(1)≤α · θ1|0 + 1π1(1)≤α · θ1|1} ≤ α.

Since (θ1|0, θ1|1) can take any value in [0,1]2, there is
no way to ensure that validity holds, except trivially, by
taking the upper probabilities identically equal to 1. This
is precisely the generalized Bayes solution in Gong and
Meng. Dempster’s rule, again, is invalid.

For assertions about the coin, the only satisfactory solu-
tion based on the methods investigated in Gong and Meng
is that based on Dempster’s rule, which ignores the data
and uses the known marginal distribution of Y1. It is easy
to check that the simple probabilistic predictor

πx

(
“Y1 = 1”

) = πx

(
“Y1 = 1”

) = 1

2
, x ∈ {0,1},

is valid and efficient. We will see below how this solution
can be achieved in the IM context.

4. INFERENTIAL MODELS

4.1 Formulation

The IM formulation starts by specifying an association
between what is being modeled, that is, data X and quan-
tity of interest Y , the unknown parameter θ ∈ �, and an

unobservable auxiliary variable U , whose distribution PU

is known, via an equation or rule

(5) (X,Y ) = a(θ,U), U ∼ PU .

The mapping a(θ, ·) implicitly encodes what is known
about the joint distribution but explicitly depends on the
unknown θ . The details depend on the objectives of the
analysis: if (X,Y ) is observable and the goal is inference
on θ , then we proceed as described in Martin and Liu
(2013, 2016); if only X is observable and the goal is pre-
diction of Y , then we proceed as in Martin and Lingham
(2016) or Cella and Martin (2020).

For the case of prediction, the idea is as follows. Given
X = x, define a set-valued mapping u �→ Qx(u), into the
space Y× � of unknown quantities, as

Qx(u) = {
(y,ϑ) ∈ Y× � : (x, y) = a(ϑ,u)

}
.

If u satisfies the equation (5) with X = x, then Qx(u)

contains the correct prediction. It is impossible to know
for sure which u values satisfy the equation, but it is
possible—since the distribution PU is known—to con-
struct a random set U of u values that we believe is likely
to contain a solution. For such a U , the new random set

Qx(U) = ⋃
u∈U

Qx(u),

obtained by mapping through the association to the space
of unknowns, is equally likely to contain the correct pre-
diction. Then we can define the lower and upper proba-
bilistic predictor for Y , given X = x,

πx(A) = PU
{
Qx(U) ⊆ A × �

}
,

πx(A) = PU
{
Qx(U) ∩ (A × �) �= ∅

}
,

where PU is the distribution of the random set U and A

is an arbitrary subset of Y. The appropriate choice of ran-
dom set U is beyond the scope of this short note, but suf-
fice it to say that choosing U ∼ PU to achieve the validity
condition is relatively straightforward; see Martin and Liu
(2013, 2016).

The above lower and upper prediction probabilities are
belief and plausibility functions, respectively, defined on
the power set of Y, determined by the association, data,
and user-defined random set. Our focus is on validity and
efficiency, so we do not obligate ourselves to manipulat-
ing these functions using the Dempster–Shafer calculus of
belief functions (Shafer, 1976, Dempster, 2008). Instead,
the focus is on expressing the association between data
and unknowns in terms of an auxiliary variable whose di-
mension is as small as possible. When the dimension is
lower, the size of the random set needed to achieve va-
lidity is smaller, hence greater efficiency. General strate-
gies for reducing the dimension were presented in Martin
and Liu (2015a, 2015b). The marginalization techniques
in particular will be used below.
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4.2 Three Prisoners

For an IM solution, start with an association

Y = U1,

X = f (θ,U1,U2),

where U1 ∼ Unif({A, B, C}) and U2 ∼ Unif(0,1) are inde-
pendent, and

f (θ,u1, u2) =
{

B if u2 ≤ 1u1=C + θ1u1=A,

C otherwise.

A unique feature of this problem is that the quantity of
interest, Y , the identity of the pardoned prisoner, has a
known marginal distribution.

Since θ is not of primary interest, there is an oppor-
tunity to potentially reduce the auxiliary variable dimen-
sion before carrying out the IM construction (Martin and
Liu, 2015b). Indeed, it is easy to check that, for every
(x, y,u2), there exists a θ such that x = f (θ, y,u2). By
the general IM marginalization theory, this implies the
second equation in the association can be effectively ig-
nored. This means valid (and efficient) prediction of Y

should proceed based on its known marginal distribu-
tion. We say the second equation can be “effectively” ig-
nored because it would not make sense to predict that, say,
Y = B if we observe X = B. So we should account for this
information in some way.

Based on the argument above, the A-step concludes
by writing Y = U , where U ∼ Unif({A, B, C}). For the
P-step, we introduce a suitable random set U ∼ PU tar-
geting the unobserved value of U . There are many op-
tions, but here we recommend to take U with support
{{B, C}, {A, B, C}} and masses assigned as

PU
(
U = {B, C}) = 2

3
and PU

(
U = { A, B, C}) = 1

3
.

With this choice, the probabilistic predictor returned by
the IM’s C-step is precisely the one described at the end
of Section 3.1, the one that is valid and most efficient,
superior to all the solutions presented in Gong and Meng
(2021) based on updating the imprecise model according
to formal rules.

4.3 Boxer, Wrestler and Coin

For an IM solution, define an association as

Y1 = 1U1≤0.5 and

Y2 = 1U2≤θ1|1,U1≤0.5 + 1U2≤θ1|0,U1>0.5,

with X = |Y1 − Y2| and (U1,U2) a pair of independent
Unif(0,1) random variables. Suppose, for example, that
X = 0 is observed, that is, that the outcomes of the fight
and coin flip are the same; the case with X = 1 is analo-
gous. When X is observed, the outcome of the fight deter-
mines the coin flip, and vice versa, so there is no need to

consider both Y1 and Y2 after X is observed. We start with
the case of Y2, the fight’s outcome. A generic (u1, u2) is
pushed through the assertion, with X = 0, to a set in the
(y2, θ)-space:

Q0(u1, u2) =
{{

(1, θ) : u2 ≤ θ1|1
}

if u1 ≤ 0.5,{
(0, θ) : u2 > θ1|0

}
if u1 > 0.5.

Since we are only interested in Y2, our assertions about
(Y2, θ) take the form {y2} × [0,1]2, for y2 ∈ {0,1}. We
will leave out the details here, but it can be shown that,
for any suitable random set U ⊆ [0,1]2, the probabilistic
predictor for Y2 returned by the IM is vacuous, that is, its
lower and upper probabilities are 0 and 1, respectively. As
we showed above, this is the only valid solution.

Finally, if interest was in predicting Y1, the outcome of
the coin flip, then we could proceed very much like in
the three prisoners example. That is, the general theory of
marginal inference in Martin and Liu (2015b) allows us
to ignore everything except Y1, hence valid and efficient
inference is achieved by using the marginal distribution of
Y1 to construct a valid and efficient probabilistic predictor.
This agrees with the solution based on Dempster’s rule
and is more efficient than that based on the generalized
Bayes rule.

5. CONCLUSION

The examples in Gong and Meng’s paper are simulta-
neously both simple and challenging, making them ideal
cases to test our understanding and to highlight the bene-
fits of our perspective that focuses specifically on the con-
struction of data-dependent beliefs that are both valid and
efficient. This note is already too long, so we will present
our IM analysis of Simpson’s paradox elsewhere.

It is interesting to see that, at least in cases where the
imprecise model is known to be correctly specified, gen-
eralized Bayes is valid. But even in these relatively sim-
ple examples, we find that the IM solution can lead to
more efficient prediction. In more complex settings, there
the generalized Bayes solution faces certain challenges,
in particular, specifying an imprecise model that is both
sufficiently flexible and simple enough to compute the
lower/upper envelopes. So there are ample reasons to con-
sider alternative solutions. For example, Cella and Mar-
tin (2020) established a connection between valid IMs
and the powerful conformal prediction machinery (Vovk,
Gammerman and Shafer, 2005).

Finally, as we were preparing this discussion piece, it
occurred to us that the failure of Fisher’s fiducial argu-
ment and Dempster’s extension thereof to achieve valid
inference and prediction in general could possibly be un-
derstood in terms of the contraction, dilation and/or sure
loss examined by Gong and Meng. This claim, too, will
be investigated further and our results will be presented
elsewhere.
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