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Comment: On Focusing, Soft and Strong
Revision of Choquet Capacities and Their
Role in Statistics
Thomas Augustin and Georg Schollmeyer

Abstract. We congratulate Ruobin Gong and Xiao-Li Meng on their
thought-provoking paper demonstrating the power of imprecise probabil-
ities in statistics. In particular, Gong and Meng clarify important statis-
tical paradoxes by discussing them in the framework of generalized un-
certainty quantification and different conditioning rules used for updat-
ing. In this note, we characterize all three conditioning rules as envelopes
of certain sets of conditional probabilities. This view also suggests some
generalizations that can be seen as compromise rules. Similar to Gong
and Meng, our derivations mainly focus on Choquet capacities of or-
der 2, and so we also briefly discuss in general their role as statistical
models. We conclude with some general remarks on the potential of im-
precise probabilities to cope with the multidimensional nature of uncer-
tainty.

Key words and phrases: Imprecise probabilities, Choquet capacities, updat-
ing, neighborhood models, generalized Bayes rule, Dempster’s rule of con-
ditioning.

1. INTRODUCTION

In their stimulating paper “Judicious Judgment Meets
Unsettling Updating: Dilation, Sure Loss and Simpson’s
Paradox,” Ruobin Gong and Xiao-Li Meng (hereafter
GM) offer a fresh perspective on famous problems that
have long shaken the foundations of statistical analysis.
GM manage to trace the paradoxes back to seemingly
self-contradictory model assumptions about the marginals
and the joint distribution and creatively relate them to
phenomena occurring in updating imprecise probabilities.
These insights are an excellent example of how the gen-
eral framework of imprecise probabilities, through its ex-
panded understanding of uncertainty, not only provides
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new opportunities for statistical modeling, but also helps
to illuminate hidden implicit assumptions in classical
modeling.

In this short note, we provide in Section 2 some vari-
ations of the central topic of conditioning under a gener-
alized probabilistic setting. We will make explicit some
mathematical properties of Choquet capacities of order
2 that are contained implicitly in GM’s paper. In par-
ticular, these properties will allow us to characterize the
three different ways of conditioning as envelopes of cer-
tain sets of conditional probabilities. In the light of this
characterization, we will revisit the notions of “being cau-
tious” and “overfitting,” contrasting the generalized Bayes
rule (GBR) and Dempster’s rule as extreme positions that
also allow generalizations by taking an intermediate po-
sition. In Section 3, we will address the question of how
general the assumed model class of Choquet capacities
of order 2 actually is, and thus which practically rele-
vant models are covered by it. Section 4 is reserved for
some general concluding remarks on the potential of im-
precise probabilities in the context of complex uncer-
tainty.
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2. ENVELOPE REPRESENTATIONS OF THE
DIFFERENT CONCEPTS OF CONDITIONAL

PROBABILITIES

2.1 A Common Representation

Our argumentation below strongly relies on the follow-
ing lemma, guaranteeing that for Choquet capacities of
order 2 the lower and respectively upper probabilities P

and P of chains of events are simultaneously attained
by a classical probability in the induced set of compati-
ble distributions. (For further reference and in accordance
with the literature, we use the term credal set (induced by
P and P ) for this set of compatible distributions in the
set M of all distributions on the considered measurable
space.)

LEMMA 1. Let P be a lower probability such that its
credal set P = {P ∈ M,P ≥ P } is relatively compact.
Then P is two-monotone if and only if for every chain of
events E1 ⊆ E2 ⊆ E3 . . . ⊆ En there exists a probability
P ∈ P such that P(Ei) = P(Ei) for all i ∈ {1, . . . , n}.1

This lemma is used in GM’s paper implicitly, for in-
stance, in the closed-form reformulation of the general-
ized Bayes rule in (GM, 2.11f) valid for Choquet capac-
ities of order 2. Using it explicitly, and applying it to the
events E1 = A ∩ B and E2 = B , shows that the ratios in
(GM, 2.8), and in (GM, 2.9), respectively, are simulta-
neously optimized. Assuming P(B) > 0 to make all ex-
pressions well-defined, this allows us to rewrite the con-
sidered types of conditional probabilities in a unified way
(cf., e.g., Gilboa and Schmeidler, 1993). We obtain

P Z(A|B) = inf
P∈PZ

P(A ∩ B)

P (B)
and

P Z(A|B) = sup
P∈PZ

P(A ∩ B)

P (B)
,

(1)

where

(2) PZ =

⎧⎪⎪⎨
⎪⎪⎩

P, Gen. Bayes rule,

PD, Dempster’s rule,

PG, Geometric rule,

with

P def= {P ∈ M|P ≥ P },
PD

def= {
P ∈M|[P ≥ P ] ∧ [

P(B) = P (B)
]}

,

PG
def= {

P ∈M|[P ≥ P ] ∧ [
P(B) = P (B)

]}
.

1For a proof, see, for example, Chateauneuf and Jaffray (1989),
Proposition 12, p. 277.

2.2 Focusing Versus (Strong) Belief Revision

The envelope representation illustrates GM’s impor-
tant distinction between two different conceptualizations
of updating, namely updating as belief revision versus
updating as focusing (cf., Dubois and Prade, 1997). In
focusing, generic knowledge is not changed, instead, it
is only applied to the event that corresponds to the ob-
served data. This leads to the generalized Bayes rule. In
contrast, in belief revision one modifies generic knowl-
edge or factual evidence about a problem in the light
of new knowledge or evidence. Equation (2) underlines
that both the geometric rule as well as Dempster’s rule
perform a rather strong revision, which may also be in-
terpreted as a strong “overfitting.” Constructing PD and
PG, they both rely exclusively on a single value taken
from the interval [P(B),P (B)]. While the geometric rule
confines itself on the lowest value, Dempster’s rule con-
centrates on the highest one.2 In a classical parametric
Bayesian setting, where the prior distribution of a pa-
rameter ϑ is updated, based on sample B , to the cor-
responding posterior distribution, P(B) is the predictive
distribution of the sample. Then Dempster’s rule refines
the underlying credal set P to contain only those proba-
bilities giving the sample the highest likelihood. Indeed,
Gilboa and Schmeidler (Gilboa and Schmeidler, 1994,
Gilboa and Schmeidler, 1993; see also, Dubois and Prade,
1997) denote Dempster’s rule as “maximum likelihood
update.” Moreover, in particular if we understand P as
parameterized by a nuisance parameter, Dempster’s rule
can be interpreted as an empirical Bayes approach. It cor-
responds to the so-called ML-II approach (e.g., Berger,
1985, Section 3.5.4), originally suggested by Good (see
Good, 1983, e.g., p. 46f).

In this sense, one can also conceptually differentiate the
generalized Bayes rule and Dempster’s rule as an ideal
type dichotomy between an optimistic view and a pes-
simistic/conservative view. While according to the gener-
alized Bayes rule the conditional lower probability is ob-
tained as the worst conditional classical probability that
is consistent with the given lower and upper probabilities,

2This argumentation understands, in accordance with GM’s paper,
Dempster’s rules of conditioning and combination as producing a non-
additive set-function enveloping a set of probabilities. To avoid misun-
derstandings, it may be noted explicitly that in the so-called Dempster–
Shafer Theory of Belief Functions popular in artificial intelligence this
interpretation is strongly rejected by many authors: “Most important, a
probability-bound interpretation is incompatible with Dempster’s rule
for combining belief functions. If we make up numbers by thinking of
them as lower bounds on true probabilities, and we then combine these
numbers by Dempster’s rule, we are likely to obtain erroneous and mis-
leading results.” Shafer (1990), p. 335. Then, belief functions derived
from Dempster’s rule of conditioning, and more generally from Demp-
ster’s rule of combination, are understood as providing an uncertainty
calculus of its own. (For a recent review, see Denœux, 2016.)
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Dempster’s rule can be viewed as a very optimistic ap-
proach, radically excluding all probability functions that
are not maximally plausible in the light of the observed
event B . Somewhere within (and to some extent also
somewhere beside?) this ideal type dichotomy, the geo-
metric rule can be located as a rule, which, in contrast to
the GBR, restricts P for updating, however, in contrast
to Dempster’s rule, in a pessimistic way. It restricts P to
all compatible probabilities that assign the lowest possible
probability to the observed event B . Although somehow
parallel in construction to Dempster’s rule, this way of re-
stricting P by relying on the lowest possible likelihood
is a minimax perspective, that is very cautious from the
learning point of view. Indeed, quite naturally, this rule,
cannot sharpen vacuous prior information (compare Sec-
tion 4.3 in GM’s paper). However, note that the geometric
rule does still always gives bounds that are equally sharp
as or sharper then the bound of the GBR, because the in-
fimum in (1) is taken over a smaller set.

2.3 Soft Revision and Likelihood Cuts

These deliberations suggest a quite natural compromise
between optimism and pessimism, between the conser-
vative focusing on one hand and the strong revision of
Dempster’s rule (and the geometric rule) on the other
hand, which can be suspected to posses a strong tendency
towards overfitting. Instead of basing the revision on one
of the interval limits of [P(B),P (B)], one relies on a
subinterval of high or small values. More concretely, for
a fixed real value α ∈ [0,1], one replaces in (2) the condi-
tion P(B) = P(B) by the condition3

(3) P(B) ≥ α · P(B),

or dually, the condition P(B) = P (B), which is equiva-
lent to P(Bc) = P(Bc)), by

(4) P
(
Bc) ≥ α · P (

Bc)

to obtain suitable generalizations of Dempster’s rule and
the geometric rule, respectively.4 For α = 0, we obtain
GBR, and for α = 1 we reproduce Dempster’s rule or the
geometric rule, respectively. In this sense, α can be seen
here as a “parameter of revision.” For a small, but pos-
itive value α, these revision rules do not rigidly revise
the model to only the compatible probabilities that give
the observed event B the most/least probability. Such soft
revisioning rules may be quite attractive when one feels

3This approach has already been introduced by Cattaneo (2014).
4Another variant of generalization would be to replace P(B) =

P(B) by P(B) ≥ P(B) + α · (P (B) − P(B)) and to replace P(B) =
P (B) analogously. Other generalizations are, of course, thinkable
as well, for instance neighborhood-models around the maximiz-
ing/minimizing probabilities. As a further alternative, Held, Augustin
and Kriegler (2008) consider a mixture of the layers produced by the
different values of [P(A),P (A)].

uncomfortable with the overfitting character of strong re-
vision rules.

Soft revision rules are not coherent in the sense of
Walley’s (1991) general coherence theory justifying the
GBR. In fact, the GBR does not perform any revision-
ing at all; it never changes the priori assessments, but
merely focuses on the implication for situations in which
B is observed. As discussed in Section 4.3 of GM’s pa-
per, one can thus not learn with the GBR from vacuous
prior knowledge.5 In contrast, the α-cut rule with α > 0
and congenial rules are able to learn from vacuous priors.

3. ON THE ROLE OF TWO-MONOTONE
CHOQUET-CAPACITIES IN STATISTICS

Many of the results in GM’s paper build on the con-
dition that the lower and upper probabilities are Choquet
capacities of order 2. In this section, we look at the natural
question arising how restrictive this assumption is from a
statistical modeling perspective.

From the principled standpoint of the general the-
ory of imprecise probabilities, the condition of two-
monotonicity seems artificial. Neither in the behavioral
approach to imprecise probabilities (see, in particular,
Walley, 1991) nor within its frequentist counterpart (de-
veloped by Fine and students, e.g., Fierens, Rêgo and
Fine, 2009), two-monotonicity has a contextual meaning
or natural interpretation. In addition, two-monotonicity
plays also no prominent role in the interpretation-
independent branch of imprecise probabilities follow-
ing Weichselberger (2001). Nevertheless, two-monotone
lower probabilities are quite attractive for statistics. In
particular, following the prominent Huber–Strassen the-
orem (Huber and Strassen, 1973; see also Augustin, Wal-
ter and Coolen, 2014, Section 7.5.2, for a review of work
building on it), two-monotone lower probabilities allow
for a rigorous generalization of Neyman–Pearson tests to
imprecise probabilities.

A very rich class of two-monotone lower probabilities,
which historically also motivated the development of the
Huber–Strassen theorem, is provided by certain neigh-
borhood models (see, e.g., Augustin and Hable, 2010,
Montes, Miranda and Destercke, 2020a, 2020b). They al-
low, quite attractively, to formalize the notion of “approx-
imately true distributions,” for instance, by considering
all distributions close to a certain central distribution p∗.

5To guarantee that GBR-like inferences with vacuous priors lead
to nonvacuous posteriors, extreme prior probabilities have to be ex-
cluded. This is achieved by the rather prominent Imprecise Dirichlet
Model (Walley, 1996) for inference from categorical data. Generally,
so-called near-ignorance prior models can be considered (see, in par-
ticular, Benavoli and Zaffalon’s, 2015 approach for multivariate expo-
nential families).
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Therefore, neighborhood models have been used in par-
ticular in robust statistics as an imprecise sampling dis-
tribution or in robust Bayesianism as generalized prior
distributions. Typical examples include the δ-total vari-
ation model, comprising all distributions where the to-
tal variation distance to p∗ is smaller than δ, or the ε-
contamination model formalizing the situation where at
least (1 − ε) · 100% of the observations follow the cen-
tral distribution p∗, but the remaining ε · 100% may just
follow any arbitrary distribution. Generally, many neigh-
borhood models can be written in the form f ◦ p∗, where
convexity of f guarantees two-monotonicity.6

Other natural ways of constructing two-monotone mod-
els are discrete models with bounds on the probabilities of
singletons only (probability intervals, Weichselberger and
Pöhlmann, 1990) or bounds on distribution functions. The
latter, often called p-boxes, play a prominent role in gen-
eralized uncertainty quantification in reliability analysis
(see, e.g., Destercke, Dubois and Chojnacki, 2008).

Finally, also a natural connection between the granu-
larity of observation and two-monotonicity shall be men-
tioned. Given two measurable spaces (�,A) and (�,F)

with F ⊇ A, a two-monotone lower probability P ∗ can
be constructed by extending a two-monotone lower prob-
ability P on A to events in F by natural extension (cf.
Walley, 1981, p. 52), and the different concepts of condi-
tioning can be applied. Naturally, if P is a classical prob-
ability and conditioning is performed by considering only
partitions in A, all considered concepts of conditioning
coincide in this case.

4. SOME GENERAL CONCLUDING REMARKS

From a principled and general perspective, we unan-
imously share GM’s enthusiasm for a generalized un-
derstanding and modeling of uncertainty. What had be-
come obvious in the first AI summer in the context of
expert systems and general systems theory, is currently
even more important in the environment of ubiquitous and
widely available data.“Uncertainty is a multidimensional
concept. [However, its . . . ] multidimensional nature was
obscured when uncertainty was conceived solely in terms
of [classical] probability theory, in which it is manifested
by only one of its dimensions.” (Klir and Wierman, 1999,
p. 1)

Indeed, as statisticians and data scientists, we have to
pay more attention to the so-to-say “big data uncertainty,”
that is, those dimensions of uncertainty that go beyond

6Such models are also used in insurance mathematics as distorted
probabilities; see, for instance, Wang and Young (1998) for premium
calculation in this context, where also the GBR and Dempster’s rule
are discussed.

sampling uncertainty and thus do not vanish with in-
creasing sample size. Only generalized probabilistic ap-
proaches used in a sophisticated way, as in GM’s pa-
per, allow to distinguish between variability and inde-
terminacy, which is crucial for an appropriate modeling
of the quality of probabilistic information. These mod-
els are naturally imprecise, or—to avoid the unfortunate
misnomer “imprecise” for actually better and more accu-
rate models—rather, set-valued. This set-valued character
promises to express scarce, conflicting or simply incom-
plete information without having to rely on unwarranted
assumptions. We agree with GM that making strong but
untestable assumptions about unobservable structures just
for the sake of a seemingly precise result undermines
practical relevance of the statistical analysis, well aware
of the “Law of Decreasing Credibility,”

“The credibility of inferences decreases with
the strength of the assumptions maintained”
(Manski, 2003, p. 1),

as Manski and his followers put it in the area of partial
identification, a rather parallel running development of
powerful set-valued analysis in econometrics.7
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