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This lecture

Compare Dempster & generalized Bayes

Two general phenomena:

dilation
contraction

Paradoxical?

Perspectives (mine and others)
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Introduction

We’ve seen different rules for updating imprecise probs:

Dempster’s rule
Generalized Bayes rule

There are others, these are just the ones we’ve discussed

It’s worth asking: how do they compare?

This leads to consideration of

dilation
contraction

Presentation is based on Gong & Meng (Stat Sci 2021)1

1https://ruobingong.github.io/files/GongMeng2021_StatSci.pdf
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Intro, cont.

Setup:

prior is a belief function, has a credal set
can apply both Dempster & generalized Bayes updates

Issues not present in precise probability:

have to choose a rule
can have counter-intuitive/paradoxical results

If imprecise prob can give counter-intuitive results, why not
just stick with precise prob since I know it “works”?

Two key points:

precise prob “works” because of strong assumptions
our intuition is based on experiences with how precise prob
behaves under unrealistically-ideal circumstances
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Setup

Universe X, finite in the examples here

A ⊆ X is a generic event
B = {B1,B2, . . .} a partition

Generalized Bayes rule:

P is a closed convex set of probabilities on X
update P based on B

PB(A | B) = sup
P∈P

P(A ∩ B)

P(B)
, B ∈ B

Dempster’s rule:

P is the credal set corresponding to prior belief P
update P based on B

PD(A | B) =
supP∈P P(A ∩ B)

supP∈P P(B)
, B ∈ B
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Example: boxer, wrestler, and coin3

Two stage experiment:

fair coin is flipped, X = 1(heads)
boxer and wrestler fight, Y = 1(boxer wins)

What’s “P(Y = 1 | X = Y )”?

Challenges:

don’t know marginal distribution of Y
don’t know the dependence between X and Y

We could make assumptions2 and compute the answer

Imprecise probability allows us to avoid assumptions, but not
without creating different challenges

2Manksi’s Law of Decreasing Credibility: The credibility of inference
decreases with the strength of the assumptions maintained

3Originally from Gelman (Amer Stat 2006)
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Example, cont.

X = {0, 1} × {0, 1}, head-tail & win-loss pairs

Incomplete/partial prior info about coin:

encode as a belief function
two focal elements, A0 = {0} × {0, 1} and A1 = {1} × {0, 1}
m(A0) = m(A1) = 0.5

“Prior ignorance” concerning the fight:

P(Y = y) = 0 and P(Y = y) = 1, y ∈ {0, 1}

Let’s see what happens when we update for “X = Y ”...
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Example, cont.

Two interesting observations...4

Inference about the boxer:
Dempster’s rule contracts

→ PD(Y = 1 | X = Y ) = PD(Y = 1 | X = Y ) = 0.5
→ PD(Y = 1 | X 6= Y ) = PD(Y = 1 | X 6= Y ) = 0.5

vacuous prior turns precise

Inference about the coin:
Generalized Bayes rule dilates

→ PB(X = 1 | X = Y ) = 0, PB(X = 1 | X = Y ) = 1
→ PB(X = 1 | X 6= Y ) = 0, PB(X = 1 | X 6= Y ) = 1

precise prior turns vacuous

Both rules give counter-intuitive/paradoxical results

Dilation and contraction are general phenomena

4Similar results in other examples analyzed in Gong & Meng
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Characterizations

Theorem — gBayes can’t contract.

If P and P are the lower and upper envelopes of P, then

inf
B∈B

PB(A | B) ≤ P(A) and sup
B∈B

PB(A | B) ≥ P(A)

The above conclusion is the property I called “joint
coherence” in the previous lecture

So, no surprise that generalized Bayes has this property

Proof below

In particular, gBayes updates avoid sure loss

No such guarantee for Dempster’s rule
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Characterizations, cont.

Proof:5 gBayes can’t contract.

Assume not, i.e., there exists A such that supB∈B PB(A | B) < P(A).

Credal set is closed so there exists PA such that P(A) = PA(A). Then:

P(A) = PA(A)

=
∑
B∈B

PA(A | B) PA(B)

≤
∑
B∈B

PB(A | B)︸ ︷︷ ︸
< P(A)

PA(B)

< P(A) ← contradiction!

5Also sheds light on the “overfitting” aspect of gBayes
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Characterizations, cont.

Theorem — gBayes dilates more.

For any A,B

PB(A | B) ≤ PD(A | B) ≤ PD(A | B) ≤ PB(A | B)

In other words, if C (B) and C (D) are the credal sets of conditional
probs based on the two rules, then C (D) ⊆ C (B)

Proof: PD(A | B) = supP(A∩B)
supP(B) ≤ sup P(A∩B)

P(B) = PB(A | B)

Avoiding incoherence requires more conservatism

“more conservatism” = more imprecision = larger credal set

Conservatism is fine, even good, but not too much
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Characterizations, cont.

Theorem — gBayes can’t sharpen prior ignorance.

Let A be s.t. P(A) = 0 and P(A) = 1. If B has P(B) > 0, then

PB(A | B) = 0 and PB(A | B) = 1

Proof: Quick sketch...

P(A) = 1 =⇒ P(Ac) = 0 =⇒ P(Ac ∩ B) = 0 for all B
if P(B) > 0, then ∃ P ∈ C (P) with P(Ac | B) = 0
then PB(Ac | B) = 0, hence PB(A | B) = 1

This kind of makes sense, ignorance is strong

But hard to believe that we can’t learn from observations

Suggests gBayes might be “too conservative”
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Election example

Hypothetical Trump vs. Clinton election example

Pre-election poll asks the following questions:

Q1 Do you intend to vote for Clinton or Trump?
Q2 Do you identify as Democrat or Republican?

X = {C,T} × {Dem,Rep}
Allow for non-response, i.e., set-valued responses

Hypothetical data interpreted as a belief function

Parameter ε controls “coarseness”

Q1 C T C T C T — — —
Q2 D D R R — — D R —
m · · · · · · 0.1− ε · · · · · · 0.2 + 8ε
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Election example, cont.

Plot shows P?(C | Q2) and P?(C | Q2) as a function of ε
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Perspectives

Gong & Meng: “the situation in the world of imprecise
probability is more confusing and clearer at the same time”

it’s right for our models to acknowledge what we don’t know
imprecise prob gives us the flexibility to do so
but do we know how to operate the machine?

Discussants from the IP community67 argue that things are
better understood than Gong & Meng suggest

Roughly, Walley’s theory of lower previsions settles it all

...except potential dilation

6Greg Wheeler and Thomas Augustin & Georg Schollmeyer
7Shafer’s comments have a different focus, but are very insightful
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Perspectives, cont.

My take:

in stat/ML, data y is used to learn about θ
inference based on map (y , . . .) 7→ (Πy ,Πy )

Bayes, fiducial, Dempster, gBayes are examples

What properties do we want the map to satisfy?

coherence
...
validity
efficiency

Latter two are related to reliability, important because now
scientific inference is outsourced (e.g., R packages)

If existing conditioning/updating rules fall short in terms of
reliability, then let’s come up with something new
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Next lecture

Today is the last lecture about imprecise probability

Transitioning into “applications”

Next time: some specifics in statistical inference

Dempster’s approach
generalized Bayes (Walley and others)
.....
the “something new” I mentioned above
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