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This lecture

Quick recap of the statistical setup

Towards valid (& efficient) imprecise-probabilistic inference

Dempster’s framework

Examples/applications

Discussion
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Recap

Problem setup:

uncertain variables: Y ∈ Y and Θ ∈ T
data Y is observable, Θ is to be inferred
joint imprecise probability PY ,Θ

Common scenario:

Θ is an unknown parameter in model for Y
precise PY |Θ and imprecise prior PΘ

Inferential model (IM): y 7→ (Πy ,Πy )

Use IM output for probabilistic reasoning

IM-based probabilistic reasoning ought to be reliable
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Recap, cont.

Towards this, the IM is valid if

PY ,Θ{ΠY (A) ≤ α, Θ ∈ A} ≤ α, all (A, α)

Equivalent condition in terms of lower probability

PY ,Θ{ΠY (A) > 1− α, Θ 6∈ A} ≤ α, all (A, α)

Validity implies control on the probability of erroneous
inferences, hence probabilistic reasoning is “reliable”

Special case of a vacuous prior for Θ:

supθ∈A PY |θ{ΠY (A) ≤ α} ≤ α
supθ 6∈A PY |θ{ΠY (A) ≥ 1− α} ≤ α all (A, α)
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Recap, cont.

False confidence theorem: A precise IM1 (e.g., default-prior
Bayes, fiducial, etc) isn’t valid in the sense above

That is, for any α there exists A such that

sup
θ 6∈A

PY |θ{ΠY (A) ≥ 1− α} > α

So, for precise IMs, even in the “no-prior” case, there always
exists assertions afflicted by false confidence

One way to avoid this risk is to require that the IM be valid

IM needs to be imprecise
but not all imprecise IMs are valid

1IM with lower and upper outputs equal: Πy = Πy = Πy , say
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Towards a valid IM

There are a number of approaches that we might consider

Dempster’s formulation
Generalized Bayes
...

Dempster’s approach is appealing

extends/generalizes Fisher’s fiducial argument
Bayes’s solution is a special case

So, I want to start with Dempster’s construction

However:

Dempster’s IM isn’t valid in the sense above
not an error, Dempster wasn’t trying for validity
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Dempster’s IM

Build a joint space Y× T, the frame/state-space model

Dempster proposes quantifying uncertainty about (Y ,Θ)
using random sets2 in the frame Y× T
For example, prior info about Θ gets extended to Y× T
through the construction of cylinders

random set for Θ→ Y× (random set for Θ)︸ ︷︷ ︸
random set for (Y ,Θ)

We’ll end up with several random sets in Y× T and be
interested in their intersection, i.e., Dempster’s rule

2Recall: random sets determine special belief functions
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Dempster’s IM, cont.

Dempster’s original formulation (1960s) considers random sets
that are set-valued mappings of random variables

Same idea here:

T model = T model(U) encodes the model
T prior = T prior(V ) encodes the prior
T obs = T obs(W ) encodes the observations y

Then interest is in the intersection

Ty = T model ∩ T prior ∩ T obs︸ ︷︷ ︸
determined by U,V ,W

Dempster focuses on the vacuous prior case, T prior ≡ Y× T,
so this term can be ignored in the above expression
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Dempster’s IM, cont.

What’s T model(U)?

Think about how you might generate data from model PY |Θ
draw a random seed U ∼ PU

plug U into a (model,Θ)-dependent function
output Y

Write this algorithm3 as Y = a(Θ,U)

Then define

T model(u) = {(Y ,Θ) ∈ Y× T : Y = a(Θ, u)},

all those data–parameter pairs compatible with given u

T model(U), with U ∼ PU , is a random set

3a.k.a. “association” or “data-generating equation”
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Dempster’s IM, cont.

Value y of Y is observed

Encode as T obs ≡ {(Y ,Θ) ∈ Y× T : Y = y}, constant

Then Ty = T model ∩ T obs is determined by U,

Ty (U) = {(y ,Θ) ∈ Y× T : y = a(Θ,U)}

Project Ty (U) in Y× T down to a random set in T
Dempster’s rule gives the y -dependent IM with

Πy (A) = PU{Ty (U) ⊆ A | Ty (U) 6= ∅}
Πy (A) = PU{Ty (U) ∩ A 6= ∅ | Ty (U) 6= ∅}

= 1− Πy (Ac)
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Example

Suppose Y | Θ ∼ Bin(n,Θ)

individual Bernoulli’s: Yi = 1(Ui ≤ Θ), Ui
iid∼ Unif(0, 1)

key relationship: U(Y ) ≤ Θ < U(Y+1)

Post-conflict-removal, the basic random set is

T model(U) = {(Y ,Θ) : U(Y ) ≤ Θ < U(Y+1)}

Plot of T model(U), where “NX ” is our Y ; from M. et al (Stat Sci 2010)
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Example, cont.

Summaries of Dempster’s IM

Lower and upper CDFs

θ 7→

{
Πy ([0, θ]) = PU{U(y+1) ≤ θ}
Πy ([0, θ]) = PU{U(y) ≤ θ}
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Properties

Conditioning4 out conflict =⇒ sufficient statistics

Extension of Fisher’s fiducial argument:

for those cases when Fisher’s argument can be applied, the
solution agrees with Dempster’s
Dempster’s solution can be applied when Fisher’s can’t

Generalizes Bayes’s theorem:

if prior is precise, then Πy = Πy and equals Bayes’s
in this case, Ty (U) is a singleton
conditioning on Ty (U) 6= ∅ ⇐⇒ conditioning on a(Θ,U) = y

4Conditioning is generally more powerful than sufficiency
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Dempster’s IM isn’t valid

Theorem (M. 2022)

If an IM suffers from sure loss in the sense that, e.g.,

sup
y

Πy (A) < PΘ(A) for some A,

then it’s not valid.

The result in the paper is stronger than above5

Neat connection between statistical & behavioral properties

Since Dempster’s rule can incur sure loss,6 the above theorem
implies Dempster’s IM isn’t valid

Also follows from the false confidence theorem since, in some
examples, Dempster’s IM is precise

5It can also be explained better than it is in the current version
6Gong & Meng’s three prisoner example
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Discussion

Dempster’s framework is intuitive and powerful

Spurred much of the development in imprecise probability

Generalizes both Bayesian and fiducial inference

Lots of applications:

many outside of statistics (see Cuzzolin’s book)
signal-plus-background (Edlefsen et al, AoAS 2009)
...

Computation can be a challenge:

conditional distributions of random sets
very recent progress has been made on this7

7Jacob et al (JASA 2021, with discussion)
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Discussion, cont.

Dempster’s IM not being valid isn’t an error/flaw, his
formulation was based more on logic

Failure to avoid sure loss is what pushed Walley and his
followers away from Dempster’s theory

Doesn’t meet my validity criteria either

So we need to keep looking for a valid IM construction...
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Next lecture

Generalized Bayes

Properties

Walley’s formulation for vacuous priors

IM efficiency considerations
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