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This lecture

m Quick recap of the statistical setup

m Towards valid (& efficient) imprecise-probabilistic inference
m Dempster's framework

m Examples/applications

m Discussion
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m Problem setup:
m uncertain variables: Y e Yand © €T
m data Y is observable, © isio be inferred
m joint imprecise probability Py o
m Common scenario:
m O is an unknown parameter in model for Y
m precise Py|g and imprecise prior Pg
Inferential model (IM): y — (0O,,,)

Use IM output for probabilistic reasoning

IM-based probabilistic reasoning ought to be reliable
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m Towards this, the IM is valid if
Pyo{lly(A)<a,® € A} <a, all (A )
m Equivalent condition in terms of lower probability
Pye{ly(A)>1—-a,0¢ A} <a, all(ACa)

m Validity implies control on the probability of erroneous
inferences, hence probabilistic reasoning is “reliable”

m Special case of a vacuous prior for ©:

suppea Pyjp{My(A) < a} <«
supgga Pyio{dy(A) >1—a} <a all (A «)
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m False confidence theorem: A precise IM! (e.g., default-prior
Bayes, fiducial, etc) isn't valid in the sense above

m That is, for any « there exists A such that

supPyg{My(A) >1—-a} >a
HgA

m So, for precise IMs, even in the “no-prior’ case, there always
exists assertions afflicted by false confidence
m One way to avoid this risk is to require that the IM be valid

® IM needs to be imprecise
m but not all imprecise IMs are valid

'IM with lower and upper outputs equal: [, =M, =M,, say
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Towards a valid IM

m There are a number of approaches that we might consider

m Dempster’s formulation
m Generalized Bayes
[ T

Dempster’'s approach is appealing

m extends/generalizes Fisher's fiducial argument
m Bayes's solution is a special case

So, | want to start with Dempster’s construction
However:

m Dempster's IM isn't valid in the sense above
m not an error, Dempster wasn't trying for validity
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Dempster's IM

m Build a joint space Y x T, the frame/state-space model

m Dempster proposes quantifying uncertainty about (Y, ©)
using random sets? in the frame Y x T

m For example, prior info about © gets extended to Y x T
through the construction of cylinders

random set for © — Y x (random set for ©)

-~

random set for (Y, ©)

m We'll end up with several random sets in Y x T and be
interested in their intersection, i.e., Dempster’s rule

2Recall: random sets determine special belief functions
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Dempster's IM, cont.

m Dempster's original formulation (1960s) considers random sets
that are set-valued mappings of random variables
m Same idea here:

m 7medel — 7model(()) encodes the model
m 7Prior = TPrior(\/) encodes the prior
m 79 = T°b(W) encodes the observations y

m Then interest is in the intersection

7} — Tmodel M TPrier TObS
Vv
determined by U, V, W

m Dempster focuses on the vacuous prior case, TP"" =Y x T,
so this term can be ignored in the above expression
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Dempster's IM, cont.

m What's 7mdel(()?
m Think about how you might generate data from model Pyg

m draw a random seed U ~ Py
m plug U into a (model, ©)-dependent function
m output Y

m Write this algorithm3 as Y = a(©, V)
m Then define

TmOdeI(u) ={(V,0)eYxT:Y =a(0,u)},

all those data—parameter pairs compatible with given u
m 7model(Y), with U ~ Py, is a random set

3a.k.a. “association” or “data-generating equation”
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Dempster's IM, cont.

Value y of Y is observed
Encode as 7% = {(Y,0) € Y x T : Y = y}, constant
m Then 7, = Jmodel  77obs is determined by U,

T,(U) ={(y,0) e Y xT:y =2a(6,U)}

Project 7,(U) in Y x T down to a random set in T

Dempster’s rule gives the y-dependent IM with

0, (A) = Pu{T,(U) CA[T,(U) # 2}
ﬁy(A)ZF’u{T(U)ﬂA;fé@IT( ) # 7}

=1-0,(A%)

10/17



m Suppose Y | © ~ Bin(n, ©)
m individual Bernoulli's: Y; = 1(U; < ©), U; o Unif(0,1)
m key relationship: Uiy) < © < Uiy,

m Post-conflict-removal, the basic random set is

7-m0d€|(U) — {(Y’ e) : U(Y) < O < U(Y+1)}

Ny

Plot of 7™°d(U), where “Nx" is our Y; from M. et al (Stat Sci 2010)
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Example, cont.

m Summaries of Dempster’s IM

m Lower and upper CDFs

0,({0,6]) = PuiUy+1) < 6}
1,([0,6]) = Pu{Uy) < 6}

Lower/upper CDF
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m Conditioning* out conflict == sufficient statistics
m Extension of Fisher’s fiducial argument:
m for those cases when Fisher’s argument can be applied, the
solution agrees with Dempster’s
m Dempster’s solution can be applied when Fisher's can't
m Generalizes Bayes's theorem:
m if prior is precise, then [1, = ﬁy and equals Bayes's
m in this case, 7,(U) is a singleton
m conditioning on 7,(U) # @ <= conditioning on a(©, U) =y

“*Conditioning is generally more powerful than sufficiency
13 /17



Dempster’s IM isn't valid

Theorem (M. 2022)

If an IM suffers from sure loss in the sense that, e.g.,

sup T, (A) < Po(A) for some A,
y

then it's not valid.

m The result in the paper is stronger than above®

m Neat connection between statistical & behavioral properties

m Since Dempster’s rule can incur sure loss,® the above theorem
implies Dempster’s IM isn’t valid

m Also follows from the false confidence theorem since, in some
examples, Dempster's IM is precise

%It can also be explained better than it is in the current version

®Gong & Meng's three prisoner example
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Discussion

m Dempster's framework is intuitive and powerful
m Spurred much of the development in imprecise probability
m Generalizes both Bayesian and fiducial inference
m Lots of applications:
m many outside of statistics (see Cuzzolin's book)
m signal-plus-background (Edlefsen et al, AocAS 2009)
n ...
m Computation can be a challenge:

m conditional distributions of random sets
m very recent progress has been made on this’

"Jacob et al (JASA 2021, with discussion)
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Discussion, cont.

m Dempster's IM not being valid isn't an error/flaw, his
formulation was based more on logic

m Failure to avoid sure loss is what pushed Walley and his
followers away from Dempster’s theory

m Doesn’t meet my validity criteria either

m So we need to keep looking for a valid IM construction...
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Next lecture

m Generalized Bayes
m Properties
m Walley's formulation for vacuous priors

m IM efficiency considerations
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