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This lecture

Generalized Bayes

Properties — good & not-so-good

Walley’s formulation for vacuous priors

IM efficiency considerations
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Introduction

Recall:

uncertain (Y ,Θ) ∈ Y× T, imprecise prob PY ,Θ

data Y = y is observed, goal is inference on Θ
an inferential model (IM) is a mapping (y , . . .) 7→ (Πy ,Πy ),
output is an imprecise prob on T
an IM is valid (wrt PY ,Θ) if

PY ,Θ{ΠY (A) ≤ α, Θ ∈ A} ≤ α, (α,A) ∈ [0, 1]× 2T

validity =⇒ “probabilistic reasoning” is simple & reliable
important to emphasize the wrt... part

Last time: Dempster’s construction of an IM

Has some nice/interesting features, but not valid

Need to keep looking for a valid IM
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Intro, cont.

Fortunately, other constructions are available

One of those is generalized Bayes

Walley’s Statistical Reasoning with Imprecise Probabilities is a
book about exactly this1

Basic idea: Bayes with a bunch of priors simultaneously

Statistically relevant points to discuss:

coherent
valid
tends to be inefficient

1Walley talks about lower previsions, I’ll talk about lower/upper probs...
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Generalized Bayes

For simplicity, consider (Y | Θ = θ) ∼ PY |θ, precise

Then PY ,Θ is determined by an imprecise prior for Θ

a credal set PΘ of precise priors, PΘ

an upper envelope PΘ

Update PΘ → PΘ|y based on Y = y

Generalized Bayes rule2 says to update as

PΘ|y (·) = sup
PΘ∈P

PΘ|y (·)︸ ︷︷ ︸
Bayes w/ prior PΘ

Roughly: Bayes rule applied to a set of priors

2e.g., Chapters 2 & 7 in Intro to IP
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Generalized Bayes, cont.

Computation??? More on this below...

Imprecise/partial prior?

classically for robustness, e.g., contamination nbhd’s
modern focus on marginalization and regularization

Difference between “robust Bayes” and generalized Bayes is
mainly in perspective:

robust Bayes wants to use a single posterior
generalized Bayes will use the set of posteriors

Does the prior matter?

In classical problems, effect of prior washes out asymptotically
But partial priors for regularization won’t — and we don’t
want them to!

What about robustness to the likelihood...?
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Validity

Theorem — generalized Bayes IM is valid.

aThe generalized Bayes IM, Πy = PΘ|y , is valid wrt PY ,Θ, i.e.,

PY ,Θ{ΠY (A) ≤ α, Θ ∈ A} ≤ α, (α,A) ∈ [0, 1]× 2T

aCorollary 3 in arXiv:2203.06703

Implies generalized Bayes is (coherent and) reliable

Special case:

the ordinary Bayes IM is valid wrt PY ,Θ

validity wrt the Bayes model isn’t surprising at all

The wrt... part is important
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Computation

Computation?

It’s the sup over priors that makes this challenging

For finite T, the sup is over a closed & convex subset of a
finite-dim simplex, not impossible

For other T, it’s an infinite-dim optimization problem :(

However, depending on the structure of the prior credal set,
some analytical results are available...
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Computation, cont.

Recall the contamination neighborhood example:

PΘ = {(1− ε)P? + εQ : any prob Q on T}

Here, ε ∈ [0, 1] and P? are fixed

Closed & convex, so we can take this as a prior credal set and
apply generalized Bayes to get (Πy ,Πy )

This prior has enough structure to show,3 e.g., that

Πy (A) =
(1− ε)

∫
A
Ly (θ) P?(dθ)

(1− ε)
∫
T Ly (θ) P?(dθ) + ε supAc Ly

Πy (A) =
(1− ε)

∫
A
Ly (θ) P?(dθ) + ε supA Ly

(1− ε)
∫
T Ly (θ) P?(dθ) + ε supA Ly

3Wasserman (Annals 1990), Example 5.2
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Remarks

Key properties of generalized Bayes:

coherent
valid

Computation is non-trivial, but can be done when the prior
credal set has enough structure

But recall that generalized Bayes tends to dilate

in particular, prior vacuous =⇒ posterior is vacuous
take ε = 1 in above example

A sign of potential inefficiency...
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Special cases

In statistics, generalized Bayes methods typically fall under
the umbrella of “robust Bayes”

Two special cases developed by Peter Walley:

imprecise Dirichlet model (IDM)
a no-name approach for vacuous priors

The IDM is for multinomial models, a generalization of the
conjugate Dirichlet priors

Lengthy summary of IDM in Ch. 7 of Intro to IP

I’ll focus here on Walley’s other idea
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GBayes for vacuous priors

Generalized Bayes proper is uselss for vacuous priors

Walley (JSPI 2002) proposed an ingenious workaround

Take the same (ε,P?)-contamination neighborhood prior

Let Πε
y and Π

ε
y denote the gBayes IM output above

Theorem (Walley 2002).

Fix ᾱ ∈ (0, 1). Then y 7→ (Πε
y ,Π

ε
y ) satisfies:

coherence

likelihood principle

if ε ≥ (2− ᾱ)−1, then it’s “valid” (wrt vacuous prior) on a
restricted range α ∈ [0, ᾱ]

and more...
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gBayes for vacuous priors, cont.

Really impressive result!

(Walley) A Bayesian & frequentist “reconciliation”

coherence follows from this being a gBayes solution
likelihood principle too (more later)
the “and more” says gBayes tests & confidence sets control
error rates at levels α ∈ [0, ᾱ]

Doesn’t get validity exactly, but that’s not deal-breaker

taking ᾱ = 0.5, say, covers the usual significance levels
in that case, take ε ≥ 2/3

Visualization via plausibility contour in Walley’s Eq. (3.3)

Seems to do everything we want...

13 / 17



Examples

Normal mean illustration: (Y | Θ = θ) ∼ N(θ, σ2n−1)

Contours for two (valid) IM solutions:

Walley’s with ε = 10
19 , P? = N(0, 3σ2)

mine I’ll tell you about soon
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Examples, cont.

Binomial illustration: (Y | Θ = θ) ∼ Bin(n, θ)

Contours for two (valid) IM solutions:

Walley’s with ε = 10
19 , P? = Unif(0, 1)

mine I’ll tell you about soon
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Remarks

There’s a price Walley pays for his “reconciliation”

Significant4 loss of efficiency compared to...

Walley justifies this as a trade-off for satisfying the likelihood
principle, e.g., stopping-rule invariance

That’s fine/nice, but I didn’t ask for that

To me, that’s not worth sacrificing (a lot of) efficiency

Fortunately, we can do better

4Even in the rate, e.g., (log n)kn−1/2 compared to usual n−1/2
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Next lecture

Towards a valid & efficient IM

Possibility measures and strong validity

Imprecise-probability-to-possibility transform

...

Presentation will be based on ideas in a recent paper5 and
some new stuff I’m working on now

5http://arxiv.org/abs/2203.06703
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