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This lecture

Towards a valid & efficient IM

Possibility measures and strong validity

Imprecise-probability-to-possibility transform

...

Presentation will be based on ideas in a recent paper1 and
some new stuff I’m working on now

1http://arxiv.org/abs/2203.06703
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Introduction

Recall:

uncertain (Y ,Θ) ∈ Y× T, imprecise prob PY ,Θ

data Y = y is observed, goal is inference on Θ
an inferential model (IM) is a mapping (y , . . .) 7→ (Πy ,Πy ),
output is an imprecise prob on T
an IM is valid (wrt PY ,Θ) if

PY ,Θ{ΠY (A) ≤ α, Θ ∈ A} ≤ α, (α,A) ∈ [0, 1]× 2T

It is unacceptable if a procedure. . . of representing uncer-
tain knowledge would, if used repeatedly, give systemati-
cally misleading conclusions (Reid & Cox 2015)
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Intro, cont.

Dempster’s IM isn’t valid

Generalized Bayes is valid but inefficient

What else can we do?

...

Options:

modify Dempster’s approach to force validity
leverage connections between possibility theory & validity
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First valid IMs

Recall, Dempster’s IM can incur sure-loss due to contraction,
validity fails for the same reason

Suggests Dempster’s random sets, Ty (U), are “too small”

How to enlarge them?

Idea:2 replace U ∼ PU with a random set U ,

Ty (U) =
⋃
u∈U
{θ ∈ T : y = a(θ, u)}︸ ︷︷ ︸

Ty (u)

Union implies “Ty (U) ⊇ Ty (U)” in a stochastic sense

Need some conditions on U ...

2M. and Liu (2013, arXiv:1206.4091) and the book
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First valid IM, cont.

Theorem (M. and Liu 2013).

Associate Y = a(Θ,U), with U ∼ PU ; vacuous prior case.

Define f (u) = PU (U 3 u), a feature of U ∼ PU . If

f (U) ≥st Unif(0, 1) when U ∼ PU ,

Ty (U) is non-empty for almost all y ,

then the IM with Πy (A) = PU{Ty (U) ∩ A 6= ∅} is valid.

Condition on U is relatively mild, in particular, doesn’t depend
on special structure in the model

Some recent3 work replaced U with a possibility measure that
dominates PU

3https://researchers.one/articles/20.08.00004
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Example

Y ∼ Bin(n, θ), vacuous prior

Fn,θ(Y − 1) ≤ 1− U < Fn,θ(U), with U ∼ PU = Unif(0, 1)

How to choose U to satisfy above condition?

set4 h(u) = |u − 1
2 |

and define U = {u : h(u) ≤ h(U)}
Then5 the y -dependent random set for Θ is

Ty (U) =
⋃
u∈U
{θ : Fn,θ(y − 1) ≤ 1− u < Fn,θ(y)}

=
⋃
u∈U
{θ : 1− Gy ,n−y+1(θ) ≤ 1− u < 1− Gy+1,n−y (θ)}

=
(
ϑy (U), ϑy (U)

]

4Same result holds with virtually any other h
5Let Ga,b denote the Beta(a, b) CDF
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Example, cont.

Where

ϑy (U) = G−1
y+1,n−y ( 1

2 − |U −
1
2 |)

ϑy (U) = G−1
y ,n−y+1( 1

2 + |U − 1
2 |)

IM’s contour function

πy (θ) = PU{Ty (U) 3 θ}
= 1− PU{ϑy (U) > θ} − PU{ϑy (U) < θ}
= · · ·
= 1−max{0, 2Gy+1,n−1(θ)− 1} −max{0, 1− 2Gy ,n−y+1(θ)}

Plot on the next page...
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Example, cont.

Data: Y = 7, n = 25

Compare Walley (dotted), IM above, and new IM

IM above is valid, more efficient than Walley, but slightly less
efficient than the new IM
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First valid IM, cont.

Above result was the basis for the
theory developed in the book

I’m biased, but I think this is nice and
interesting work

Not perfect though:

requires “Y = a(Θ,U)”
requires user to specify U
too complicated
doesn’t handle partial priors

Need to modernize the idea
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Strong validity

Validity aims at making probabilistic reasoning reliable

In the vacuous-prior settings, this condition was also sufficient
for constructing IM-based confidence regions6

With genuine partial priors, validity isn’t strong enough

Definition.

Let (y , . . .) 7→ (Πy ,Πy ) be an IM, and define the contour πy (θ) =

Πy ({θ}). This IM is strongly valid (wrt PY ,Θ) if

PY ,Θ{πY (Θ) ≤ α} ≤ α, all α ∈ [0, 1]

6e.g., Theorem 1 in https://researchers.one/articles/21.01.00002
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Strong validity, cont.

Similar to Walley (2002)’s fundamental frequentist principle

Makes the construction of IM-based confidence regions easy

Cα(y) = {θ ∈ T : πy (θ) > α}, α ∈ [0, 1]

Implications (more details later):

some coherence-like properties
more-or-less forces the IM to be consonant

Why stronger? Equivalent definition is

PY ,Θ{ΠY (A) ≤ α, for some A 3 Θ︸ ︷︷ ︸
uniformity in A

} ≤ α, α ∈ [0, 1]

How to achieve strong validity?

12 / 21



New approach

Two key ingredients:7

outer consonant approximations
imprecise-probability-to-possibility transform

Basic general facts:

Let P be an upper prob for X and define

π(x) = P{h(X ) ≤ h(x)}
Π(A) = supx∈A π(x)

then Π is an outer consonant approximation of P
that is, Π is consonant and C (P) ⊆ C (Π)
which implies P{π(X ) ≤ α} ≤ α

Use these ideas to construct a strongly valid IM

7See the Week 04a lecture material
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New approach, cont.

The explanation of how to get from the above ideas/facts to
my specific construction is lengthy8

I’ll spare you that explanation and jump to the conclusion

Easiest for the precise-model-partial-prior case

Notation:

pθ(y) is the density/mass function of the (precise) model
q(θ) = PΘ({θ}) is the (imprecise) prior contour
the relative likelihood is

η(y , θ) =
pθ(y) q(θ)

supt∈T pt(y) q(t)
, θ ∈ T

kind of like Bayes’s formula...

8Very much influenced by the fundamental principles described in
Section 2.3.2.1 in Hose’s PhD thesis
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New approach, cont.

Recall that PY ,Θ is known

Define a (consonant) IM with contour function9

πy (θ) = PY ,Θ{η(Y ,Θ) ≤ η(y , θ)}, θ ∈ T

Consonance means the upper prob is defined via optimization

Πy (A) = sup
θ∈A

πy (θ), A ⊆ 2T

Can marginalize via extension principle...

Outer consonant approximation =⇒ strong validity

Theorem.

The IM above is strongly valid wrt PY ,Θ.

9just an imprecise-probability-to-possibility transform
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New approach, cont.

Generalized Bayes is valid but not strongly valid

Other IMs are strongly valid, but tend to be inefficient10

The only IM that achieves strong validity and efficiency?

Why do I say “efficient”?

naive11 construction in vacuous prior case gives contour

πy (θ) = sup
ϑ

PY |ϑ

{ pϑ(Y )

supt pt(Y )
≤ pθ(y)

supt pt(y)

}
relative likelihood is an approx pivot, so supϑ drops out
RHS ≈ the p-value for the optimal (?) likelihood ratio test

10e.g., Sec. 4.3 in https://researchers.one/articles/21.05.00001
11“Naive” because there are principles that can/should be applied to improve

efficiency — more on this later
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New approach, cont.

What’s important is how this deals with partial prior info

Recall:

πy (θ) = PY ,Θ{η(Y ,Θ) ≤ η(y , θ)}, θ ∈ T

with η(y , θ) = pθ(y) q(θ)/ supt{· · · }
Then partial prior info enters in two ways:

through the definition of η (depends on q)
through the model PY ,Θ

This partial prior dependence creates opportunity for efficiency
gain compared to vacuous-prior case

Important: incorporating partial prior doesn’t ruin validity!
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Computation

How to compute the PY ,Θ-probability that drives πy?

If PΘ is consonant, then the Choquet integral simplifies:

πy (θ) =

∫ 1

0

[
sup

ϑ:q(ϑ)>β
PY |ϑ{η(Y , ϑ) ≤ η(y , θ)}

]
dβ

Suggests a simple/naive Monte Carlo strategy:

πy (θ) ≈
∫ 1

0
max

s:q(ϑs)>β

[ 1

M

M∑
m=1

1{η(Y
(m)
s , ϑs) ≤ η(y , θ)}

]
dβ

where

ϑ1, . . . , ϑS is a fixed, dense grid

Y
(1)
s , . . . ,Y

(M)
s

iid∼ PY |ϑs
, for s = 1, . . . ,S
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Example

PY |θ = Bin(n, θ)

Vacuous, complete, and partial prior info12

Partial prior info is more influential than complete
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12There are dimension-reduction steps taken that I’m not explaining...
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Summary

New construction of a strongly valid IM

Advantage is that it’s based solely on the posited model

no choice of association
no choice of a random set (U)

Partial prior is like regularization

allows for efficiency gains
without sacrificing validity

Wanna see how this works in high-dim cases

Need to scale up the computations
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Next lecture

Coherence-like properties

Efficiency considerations

basic dimension-reduction
marginalization

...
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