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This lecture

Towards a valid & efficient IM
Possibility measures and strong validity

Imprecise-probability-to-possibility transform

Presentation will be based on ideas in a recent paper! and
some new stuff I'm working on now

"http://arxiv.org/abs/2203.06703
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Introduction

m Recall:
m uncertain (Y,0) € Y x T, imprecise prob Py o
m data Y = y is observed, goal is inference on ©
m an inferential model (IM) is a mapping (y,...) — (00,,1,),
output is an imprecise prob on T
m an IM is valid (wrt Py o) if

Pyo{ly(A)<a,@c Al <a, (a,A)el0,1]x2"

It is unacceptable if a procedure. .. of representing uncer-
tain knowledge would, if used repeatedly, give systemati-
cally misleading conclusions (Reid & Cox 2015)

3/21



Intro, cont.

Dempster’s IM isn't valid
Generalized Bayes is valid but inefficient

[
n
m What else can we do?
n
[

Options:
m modify Dempster’'s approach to force validity
m leverage connections between possibility theory & validity
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First valid IMs

m Recall, Dempster's IM can incur sure-loss due to contraction,
validity fails for the same reason

m Suggests Dempster’'s random sets, 7, (U), are “too small”
m How to enlarge them?
m Idea:? replace U ~ Py with a random set I,
T =J Ty =a(b,u)
uet T()
m Union implies “7,(U) 2 T,(U)" in a stochastic sense
m Need some conditions on U...

2M. and Liu (2013, arXiv:1206.4091) and the book
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First valid IM, cont.

Theorem (M. and Liu 2013).
Associate Y = a(©, U), with U ~ Py; vacuous prior case.
Define f(u) = Py(U > u), a feature of U ~ Pyy. If
m f(U) >4 Unif(0,1) when U ~ Py,
m 7,(U) is non-empty for almost all y,
then the IM with M, (A) = Py {7, (U) N A # &} is valid.

m Condition on U is relatively mild, in particular, doesn't depend
on special structure in the model

m Some recent? work replaced ¢ with a possibility measure that
dominates Py

*https://researchers.one/articles/20.08.00004
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m Y ~ Bin(n, ), vacuous prior
mFo(Y —1)<1—-U<Fpp(U), with U ~ Py = Unif(0, 1)
m How to choose U to satisfy above condition?
m set* h(u) = [u— 1
m and define U = {u: h(u) < h(U)}
m Then® the y-dependent random set for © is

= J{0: Fao(y —=1) < 1—u < Fop(y)}
ueU

= U {0:1=Gyny1(0) <1—u<1-Gyr1ny(0)}
uel

= (9,(V),7,(V)]

*Same result holds with virtually any other h

®Let G, denote the Beta(a, b) CDF
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Example, cont.

m Where
9,(U) = y+1n LG-1U=3D)
(U) y,n— y+1(2+|U D

m IM’s contour function

™y (0) = Pu{T,(U) > 0}
=1-Py{0,(U) > 0} — Pu{d, (V) < 6}

=1-max{0,2G,11,n-1(0) — 1} — max{0,1 — 2G, r—,+1(0)}

m Plot on the next page...
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Example, cont.

mData: Y=7,n=25
m Compare Walley (dotted), IM above, and new IM

m IM above is valid, more efficient than Walley, but slightly less
efficient than the new IM

<
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First valid IM, cont.

™ A bove resu It was t h e ba s i S for t h e Monographs on Statistics and Applied Probabilty 147

theory developed in the book Inferential
Models

m I'm biased, but | think this is nice and o o
interesting work Uncertainty

m Not perfect though:

requires “Y = a(©, U)"

m requires user to specify U —
m too complicated Ryan Martin
m doesn't handle partial priors el

m Need to modernize the idea
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Strong validity

m Validity aims at making probabilistic reasoning reliable

m In the vacuous-prior settings, this condition was also sufficient
for constructing IM-based confidence regions®

m With genuine partial priors, validity isn't strong enough

Definition.

Let (y,...) — (ﬂy,ﬁy) be an IM, and define the contour m,(0) =
N, ({0}). This IM is strongly valid (wrt Py g) if

Pyof{ny(®) <a}<a, allacl0,1]

be.g., Theorem 1 in https://researchers.one/articles/21.01.00002
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Strong validity, cont.

Similar to Walley (2002)'s fundamental frequentist principle

Makes the construction of IM-based confidence regions easy
Caly)={0€T:m(0) >a}, ac]01]

Implications (more details later):

m some coherence-like properties
m more-or-less forces the IM to be consonant

Why stronger? Equivalent definition is

Py o{My(A) <a, forsome A>0} <a, ac]0,]]
) —_————

uniformity in A

How to achieve strong validity?
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New approach

m Two key ingredients:’
m outer consonant approximations
m imprecise-probability-to-possibility transform
m Basic general facts:
m Let P be an upper prob for X and define
m 7(x) = P{h(X) < h(x)}
B TI(A) = sup,cq (%)
m then [T is an outer consonant approximation of P
m that is, I is consonant and €' (P) C % (M)
m which implies P{7(X) < a} <«

m Use these ideas to construct a strongly valid IM

"See the Week 04a lecture material
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New approach, cont.

m The explanation of how to get from the above ideas/facts to
my specific construction is lengthy?®

m I'll spare you that explanation and jump to the conclusion

m Easiest for the precise-model-partial-prior case

m Notation:
m py(y) is the density/mass function of the (precise) model
m q(0) = Po({0#}) is the (imprecise) prior contour
m the relative likelihood is

n(yﬁ)—M QeT

 supeer pe(y) q(t)’

m kind of like Bayes's formula...

8Very much influenced by the fundamental principles described in
Section 2.3.2.1 in Hose's PhD thesis
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New approach, cont.

Recall that ﬁy’@ is known

Define a (consonant) IM with contour function®
Wy(e) = ﬁY,@{n()/? @) < "7()/7 0)}7 0eT
m Consonance means the upper prob is defined via optimization

M, (A) =supm, (), AcC2"
oA

Can marginalize via extension principle...

m Outer consonant approximation = strong validity

Theorem.

The IM above is strongly valid wrt ﬁy’e.

%just an imprecise-probability-to-possibility transform
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New approach, cont.

m Generalized Bayes is valid but not strongly valid
m Other IMs are strongly valid, but tend to be inefficient!®

m The only IM that achieves strong validity and efficiency?
m Why do | say “efficient”?
m naive!! construction in vacuous prior case gives contour

po(Y) _ _poly) }

= P
7ry(9) s:;p YW{suptPt(Y) ~ sup, pe(y)

m relative likelihood is an approx pivot, so sup, drops out
m RHS =~ the p-value for the optimal (?) likelihood ratio test

e g, Sec. 4.3 in https://researchers.one/articles/21.05.00001
1 “Najve" because there are principles that can/should be applied to improve

efficiency — more on this later
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New approach, cont.

What's important is how this deals with partial prior info
Recall:

my(0) =Py of{n(Y,0) <n(y,0)}, 6eT

with 7(y,0) = po(y) q(0)/ sup.{-- - }
m Then partial prior info enters in two ways:

m through the definition of 7 (depends on q)
m through the model Py o

This partial prior dependence creates opportunity for efficiency
gain compared to vacuous-prior case

Important: incorporating partial prior doesn't ruin validity!
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Computation

m How to compute the §y7@—probabi|ity that drives 7,7

m If Pg is consonant, then the Choquet integral simplifies:

1
@)= [ | s Prigln(Y.0) < n(y.0)}] 5
0 "9:q(9)>pB

m Suggests a simple/naive Monte Carlo strategy:

1 M
1 (m)
m,(0) ~ max [— Hn(Ys ", ¥s) < y,Q}dﬁ
0= [ ma [ 31004700 <oty.0)
where
mJ,...,0s isaf_i_xed, dense grid
n YW Y E Py, fors=1,...,5
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L] Pylg = Bin(n, 0)
m Vacuous, complete, and partial prior infol?

m Partial prior info is more influential than complete
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2There are dimension-reduction steps taken that I'm not explaining...
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New construction of a strongly valid IM

Advantage is that it's based solely on the posited model

m no choice of association
m no choice of a random set ()

Partial prior is like regularization

m allows for efficiency gains
m without sacrificing validity

Wanna see how this works in high-dim cases

Need to scale up the computations
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Next lecture

m Coherence-like properties
m Efficiency considerations

m basic dimension-reduction
m marginalization
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