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This lecture

m Recap the new (partial-prior) IM construction
m Properties:

m strong validity

® ‘“near coherence”
m Dimension-reduction to improve efficiency

lllustration
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Introduction

m Usual setup: (Y,0) ~Py o
m precise model (Y | © = 0) ~ Pyjg, density ps(y)
m imprecise prior for © with contour q(#) = Pg({6})

m Combine the two into a consonant IM (ﬂy,ﬁy) with contour

my(0) = Py.e{n(Y.0) < n(y,0)},
where 1 is a “relative likelihood"

po(y) q(0)

1y, 0) = supy po(y) q(9)
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Intro, cont.

Strong validity follows by the construction

Computation typically is non-trivial

m If Pg is consonant, then

1

@ = [ | sup Pypfn(¥.9) <u(r.0)}] da
0 "9:q(9)>a
' 1 ¢ (m)
~ — {n(Ys™,9s) < 0} d
[ Lz g 221004709 < .00 o

m At least a naive Monte Carlo strategy is available!

Less-naive strategies would be available depending on specifics
of the problem at hand

'https://researchers.one/articles/22.05.00001
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m IM construction is based on a suitable “outer consonant
approximation” of Py g

m Strong validity is an immediate consequence

The IM constructed above is strongly valid (wrt Py g), i.e.,
Pyof{ry(®) <a} <a, acl0,1]

Corollary.

Strong validity implies that IM-based confidence regions, C,(y) =
{0 : m,(0) > a}, satisfy

Pyo{Cu(Y)#O} <a, ac]01]
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Properties, cont.

m Strong validity is “frequentist” in nature
m What about “behavioral” properties, e.g., coherence?

m Think of the IM construction as an updating rule that maps
prior (Pg,Pe) to a “posterior” (M, M1,)

m Can't get full-blown coherence, but...

The strongly valid constructed above, interpreted as an “updating
rule,” is half-coherent in the sense that

inf ﬂy(A) < Pg(A) and Supﬁy(A) > ﬁ@(/\), all A
yeY yeY
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Properties, cont.

m As suggested, this falls short of full-blown coherence

m In fact, the above is just one of the two conditions required
for coherence, the other condition is

Po(A) < max{l'ly(A),sipl'IX(A)}, all y, all A
X7y

m Intuition: If above condition fails, then you have a strategy
that makes me look silly

Determine the (y, A) at which above fails

Sell me a gamble on A for Pg(A)

Then wait for Y to be observed and proceed as follows:
m if Y # y, then you buy it back for M, (A) < Pg(A) and I lose
m if Y =y, then do nothing, forcing me to pay Pg(A) which is

more than my advertised buying price I1, (A)
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Properties, cont.

m There's nothing about the IM construction that ensures the
second condition above is satisfied

But it holds trivially if y — T, (A) is continuous

There are cases where this second condition fails

m in some cases,? only gBayes is coherent
m M construction is different from gBayes

So: no general, full-blown coherence result for the new IM

We get improved efficiency, a good trade (in my opinion)

2Walley 1991, Sec. 6.5.4
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Efficiency considerations

m A precise, mathematical definition of efficiency is difficult to
pin down, currently unavailable

m As described before, want the IM'’s contours to be as tightly
concentrated as possible for each y

e.g., this makes the C,(y) confidence region small

Too much to ask for “tightest concentration” uniformly in y

m We have intuition to guide us, so let's proceed informally

If we define mathematics as the art and science of deductive
reasoning... then statistics (the art and science of induction) is
essentially anti-mathematics. A mathematical theory of statis-
tics is, therefore, a logical impossibility! —D. Basu
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Efficiency, cont.

m Key insight:3 don't do unnecessary calculations in the
Choquet integral that defines contour 7,

m related to the “curse-of-dimensionality”
m integrating over non-essential dimensions inflates contour,
reduces efficiency

m So, reduce the dimension as much as possible first
m First example: if U = U(Y) is sufficient, then

_ poly)q(9)
0= Sy paly) (@)
_ polw)ply | v) q0)
supy po(u) p(y | u) q(v)
= supfjf)i;)(j)(i)(ﬁ) < only depends on (u, 0)!

31'm currently calling this a Principle of Minimum Complexity
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Efficiency, cont.

In most cases, U = U(Y) is lower-dim than Y

If  only depends on (u, 6), then we only need to compute the
Choquet integral over U(Y) x T, lower-dim!

This is free — no extra computations or loss of info

In some cases, further reduction is possible by conditioning on
ancillary statistics, but | won't discuss this
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Efficiency, cont.

m There are certain “extreme” cases to consider
m One? is the case where prior information is vacuous

m here q(0) =1, so n(y, 0) = po(y)/ supy ps(y)
m naive application of the construction gives
y

7_(_naive((g) _ S:;P PYW{U(Y719) <n(y,0)}

m the integration/supremum over ¥ creates inefficiency
m a clearly more efficient IM has contour

my(0) = Pyjo{n(Y,0) <n(y,0)}

m How to handle this efficiently?

*Another is when the prior is complete, like in the traditional Bayes case
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Efficiency, cont.

Plausibility ordering: n(y,0) = pg(y)/ supy py(y)
This resembles a conditional density, not a joint

Recall the minimum complexity principle: if dimension can be
reduced before integration, then do it
m In this case,

m can reduce dimension by fixing 6
m work with just the conditional that appears in 7

m End result is clearly more efficient:

my(0) = Pyjo{n(Y,0) < n(y,0)} < mp2¥e(6), all 0
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Marginal inference

m It's often the case that the quantity of interest is just a
feature of the model parameters
m Express the model parameter A as (©, V), where
m O is the feature of interest
m and V is the nuisance parameter
m e.g., suppose A is a mean vector, © = ||A||, and WV is the unit
vector in direction of A
m One (naive) strategy is to construct a strongly valid IM for A
and then marginalize to © via extension principle
m But if one is only interested in ©, then efficiency can be
gained by reducing dimension before IM construction
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Marginal inference, cont.

m There are a number of ways this can be handled

m Without any special structure, the best strategy is via
profiling, i.e., using plausibility order

~supy po.u(y) q(0)
100 = G P () a0)

m Some problems have special structure, however

m Suppose that, e.g.,

Po.u(v) = Py (U(y)) po(V(y) | U(y))

Vv
no dependence on

m 1)-dependence cancels out in the profiling step, so we get
dimension reduction since only have to integrate over V
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m Important practical example:
ind

= (Y; [ Ai = Xj) < Bin(nj, A;), for i = 1,2
m interest in the log-odds ratio © = Iog(l’_\zl\2 = 1’_\1/\1)
BO=0 <= A=A\,

m Define V=Yiand U=Y1+ Y5

m Well-known result is that

ptv [ =mtv o) () (") &

for v = max(u — n1,0),...,min(ny, u)

m Use this conditional dist to construct a marginal IM for ©
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Example, cont.

g L T T T T T T g L T T T T T T
-4 -2 0 2 4 6 -4 -2 0 2 4 6
] ]
(a) Y = (1,2), n = (43,39) (b) Y = (4,11), n = (146,154)

Figure: Plausibility contours for the log odds ratio in two mortality data
sets: vacuous prior (black) & partial prior (red)
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Next lecture

m Wrap-up discussion of IM construction
m Imprecise prob methods for prediction/classification
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