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This lecture

Recap the new (partial-prior) IM construction

Properties:

strong validity
“near coherence”

Dimension-reduction to improve efficiency

Illustration
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Introduction

Usual setup: (Y ,Θ) ∼ PY ,Θ

precise model (Y | Θ = θ) ∼ PY |θ, density pθ(y)

imprecise prior for Θ with contour q(θ) = PΘ({θ})
Combine the two into a consonant IM (Πy ,Πy ) with contour

πy (θ) = PY ,Θ{η(Y ,Θ) ≤ η(y , θ)},

where η is a “relative likelihood”

η(y , θ) =
pθ(y) q(θ)

supϑ pϑ(y) q(ϑ)
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Intro, cont.

Strong validity follows by the construction

Computation typically is non-trivial

If PΘ is consonant, then

πy (θ) =

∫ 1

0

[
sup

ϑ:q(ϑ)>α
PY |ϑ{η(Y , ϑ) ≤ η(y , θ)}

]
dα

≈
∫ 1

0

[
max

s:q(ϑs)>α

1

M

M∑
m=1

1{η(Y
(m)
s , ϑs) ≤ η(y , θ)}

]
dα

At least a naive Monte Carlo strategy is available1

Less-naive strategies would be available depending on specifics
of the problem at hand

1https://researchers.one/articles/22.05.00001
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Properties

IM construction is based on a suitable “outer consonant
approximation” of PY ,Θ

Strong validity is an immediate consequence

Theorem.

The IM constructed above is strongly valid (wrt PY ,Θ), i.e.,

PY ,Θ{πY (Θ) ≤ α} ≤ α, α ∈ [0, 1]

Corollary.

Strong validity implies that IM-based confidence regions, Cα(y) =
{θ : πy (θ) > α}, satisfy

PY ,Θ{Cα(Y ) 63 Θ} ≤ α, α ∈ [0, 1]
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Properties, cont.

Strong validity is “frequentist” in nature

What about “behavioral” properties, e.g., coherence?

Think of the IM construction as an updating rule that maps
prior (PΘ,PΘ) to a “posterior” (Πy ,Πy )

Can’t get full-blown coherence, but...

Theorem.

The strongly valid constructed above, interpreted as an “updating
rule,” is half-coherent in the sense that

inf
y∈Y

Πy (A) ≤ PΘ(A) and sup
y∈Y

Πy (A) ≥ PΘ(A), all A
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Properties, cont.

As suggested, this falls short of full-blown coherence

In fact, the above is just one of the two conditions required
for coherence, the other condition is

PΘ(A) ≤ max
{

Πy (A), sup
x 6=y

Πx(A)
}
, all y , all A

Intuition: If above condition fails, then you have a strategy
that makes me look silly

1 Determine the (y ,A) at which above fails
2 Sell me a gamble on A for PΘ(A)
3 Then wait for Y to be observed and proceed as follows:

if Y 6= y , then you buy it back for Πy (A) < PΘ(A) and I lose
if Y = y , then do nothing, forcing me to pay PΘ(A) which is
more than my advertised buying price Πy (A)
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Properties, cont.

There’s nothing about the IM construction that ensures the
second condition above is satisfied

But it holds trivially if y 7→ Πy (A) is continuous

There are cases where this second condition fails

in some cases,2 only gBayes is coherent
IM construction is different from gBayes

So: no general, full-blown coherence result for the new IM

We get improved efficiency, a good trade (in my opinion)

2Walley 1991, Sec. 6.5.4
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Efficiency considerations

A precise, mathematical definition of efficiency is difficult to
pin down, currently unavailable

As described before, want the IM’s contours to be as tightly
concentrated as possible for each y

e.g., this makes the Cα(y) confidence region small

Too much to ask for “tightest concentration” uniformly in y

We have intuition to guide us, so let’s proceed informally

If we define mathematics as the art and science of deductive
reasoning... then statistics (the art and science of induction) is
essentially anti-mathematics. A mathematical theory of statis-
tics is, therefore, a logical impossibility! —D. Basu
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Efficiency, cont.

Key insight:3 don’t do unnecessary calculations in the
Choquet integral that defines contour πy

related to the “curse-of-dimensionality”
integrating over non-essential dimensions inflates contour,
reduces efficiency

So, reduce the dimension as much as possible first

First example: if U = U(Y ) is sufficient, then

η(y , θ) =
pθ(y) q(θ)

supϑ pϑ(y) q(ϑ)

=
pθ(u) p(y | u) q(θ)

supϑ pϑ(u) p(y | u) q(ϑ)

=
pθ(u) q(θ)

supϑ pϑ(u) q(ϑ)
← only depends on (u, θ)!

3I’m currently calling this a Principle of Minimum Complexity
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Efficiency, cont.

In most cases, U = U(Y ) is lower-dim than Y

If η only depends on (u, θ), then we only need to compute the
Choquet integral over U(Y)× T, lower-dim!

This is free — no extra computations or loss of info

In some cases, further reduction is possible by conditioning on
ancillary statistics, but I won’t discuss this
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Efficiency, cont.

There are certain “extreme” cases to consider

One4 is the case where prior information is vacuous

here q(θ) ≡ 1, so η(y , θ) = pθ(y)/ supϑ pϑ(y)
naive application of the construction gives

πnaive
y (θ) = sup

ϑ
PY |ϑ{η(Y , ϑ) ≤ η(y , θ)}

the integration/supremum over ϑ creates inefficiency
a clearly more efficient IM has contour

πy (θ) = PY |θ{η(Y , θ) ≤ η(y , θ)}

How to handle this efficiently?

4Another is when the prior is complete, like in the traditional Bayes case
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Efficiency, cont.

Plausibility ordering: η(y , θ) = pθ(y)/ supϑ pϑ(y)

This resembles a conditional density, not a joint

Recall the minimum complexity principle: if dimension can be
reduced before integration, then do it

In this case,

can reduce dimension by fixing θ
work with just the conditional that appears in η

End result is clearly more efficient:

πy (θ) = PY |θ{η(Y , θ) ≤ η(y , θ)} ≤ πnaive
y (θ), all θ
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Marginal inference

It’s often the case that the quantity of interest is just a
feature of the model parameters

Express the model parameter Λ as (Θ,Ψ), where

Θ is the feature of interest
and Ψ is the nuisance parameter

e.g., suppose Λ is a mean vector, Θ = ‖Λ‖, and Ψ is the unit
vector in direction of Λ

One (naive) strategy is to construct a strongly valid IM for Λ
and then marginalize to Θ via extension principle

But if one is only interested in Θ, then efficiency can be
gained by reducing dimension before IM construction
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Marginal inference, cont.

There are a number of ways this can be handled

Without any special structure, the best strategy is via
profiling, i.e., using plausibility order

η(y , θ) =
supψ pθ,ψ(y) q(θ)

supϑ,ψ pϑ,ψ(y) q(ϑ)

Some problems have special structure, however

Suppose that, e.g.,

pθ,ψ(y) = pψ
(
U(y)

)
pθ
(
V (y) | U(y)

)︸ ︷︷ ︸
no dependence on ψ

ψ-dependence cancels out in the profiling step, so we get
dimension reduction since only have to integrate over V
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Example

Important practical example:

(Yi | Λi = λi )
ind∼ Bin(ni , λi ), for i = 1, 2

interest in the log-odds ratio Θ = log
(

Λ2

1−Λ2
÷ Λ1

1−Λ1

)
Θ = 0 ⇐⇒ Λ1 = Λ2

Define V = Y1 and U = Y1 + Y2

Well-known result is that

pλ(v | u) ≡ pθ(v | u) ∝
(
n2

v

)(
n1

u − v

)
eθv ,

for v = max(u − n1, 0), . . . ,min(n2, u)

Use this conditional dist to construct a marginal IM for Θ
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Example, cont.
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(a) Y = (1, 2), n = (43, 39)
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(b) Y = (4, 11), n = (146, 154)

Figure: Plausibility contours for the log odds ratio in two mortality data
sets: vacuous prior (black) & partial prior (red)
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Next lecture

Wrap-up discussion of IM construction

Imprecise prob methods for prediction/classification

...
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