ST790 — Fall 2022 Imprecise-Probabilistic Foundations of Statistics

Ryan Martin North Carolina State University www4.stat.ncsu.edu/~rmartin

Week 10b

- Wrap-up of new consonant IM developments
- Shift gears from inference to prediction
- Setup
- Model-based methods
- Non-model-based methods
 - nonparametric predictive inference
 - conformal prediction

- Previous focus was on validity wrt vacuous priors
- This was achieved, roughly, by suitably enlarging the random sets in Dempster's framework
- Efficiency achieved by reducing the dimension of the "auxiliary variable" before carrying out the construction
- Other cool/novel developments...¹
- So-called *generalized IMs* are a bit different:
 - dimension-reduction/efficiency built in²
 - a number of applications³
 - inspired some more recent developments (below)

¹See the *conditional* and *marginal* IM papers

²arXiv:1203.6665 and arXiv:1511.06733

³Cahoon and M., arXiv:1910.00533 and arXiv:1912.00037

What's missing from these developments?

- behavioral properties
- incorporation of (partial) prior info
- guidance about what construction is "best"
- flexibility, computational & conceptual simplicity

...

New developments aim to fill these gaps

In particular:

- new results on (half-)coherence
- construction and theory allows for partial prior info
- no/fewer loose ends concerning how to do it
- likelihood plays a central role
- seems flexible, computationally doable

Technical novelties:

- outer consonant approximation
- imprecise-probability-to-possibility transform
- Other things I didn't tell you:
 - complete-prior case is interesting
 - applies to prediction & non- and semi-parametric cases
 - my focus on consonant structure is WLOG
- Next steps:
 - general computation, scaling up to higher dimensions
 - applications literally everything is open!
 - model selection
 - decision theory
 - imprecision in the data/model
 - approximations (sometimes necessary...)

- In classical inference, there's a fixed unknown to learn
- Prediction is focused on a future observable
- Under a "probabilistic" framework, there's not much difference between the two problems
- Consider a simple case to start:
 - $(Y, \tilde{Y} | \Theta = \theta)$ iid from model $\mathsf{P}_{Y|\theta}$
 - goal is "inference" on \tilde{Y} , given Y = y
 - \blacksquare then Θ is a nuisance parameter, marginalize it out
- Lots of ways to handle this: Bayes, DS, gBayes, ...
- My IM construction can handle this too⁴

⁴Old-school IMs for prediction in arXiv:1403.7589

Prediction, cont.

• $(Y | \Theta = \theta) \sim N(\theta, \sigma^2 n^{-1})$ and $(\tilde{Y} | \Theta = \theta) \sim N(\theta, \sigma^2)$ • Bayesian approach:

flat prior for Θ

• predictive distribution: $(\tilde{Y} | Y = y) \sim N(y, \sigma^2(1 + n^{-1}))$

• My approach (with vacuous prior):

 π

the "relative likelihood" is given by

$$\eta(y,\tilde{y}) = \frac{\sup_{\theta} p_{\theta}(y) p_{\theta}(\tilde{y})}{\sup_{x,\theta} p_{\theta}(y) p_{\theta}(x)} = \dots = \exp\left\{-\frac{(\tilde{y}-y)^2}{2\sigma^2(1+n^{-1})}\right\}$$

Since $\tilde{Y} - Y$ is a pivot, can easily get contour

$$egin{aligned} &\mathcal{P}_{Y, ilde{Y}| heta} \{\eta(Y, ilde{Y}) \leq \eta(y, ilde{y}) \} \ &= 1 - \mathtt{pchisq} \Big(rac{(ilde{y} - y)^2}{\sigma^2(1 + n^{-1})}, \, \mathtt{df} = 1 \Big) \end{aligned}$$

- Inference problems tend to be model-driven, i.e., the thing you want to infer is determined by the posited model
- Prediction problems don't inherently depend on a posited model, so there's a desire to be "model-free"
- This is tricky for model-based frameworks...
- There are some options:
 - nonparametric Bayes
 - my IM construction still works in principle
- Balancing validity and efficiency is a challenge
- Warrants considering a non-model-based perspective

Nonparametric predictive inference

- One idea is based on so-called Hill's assumption⁵
- Let $Y^n = (Y_1, \ldots, Y_n)$ be observable, Y_{n+1} to be predicted
- Assume $Y_1, \ldots, Y_n, Y_{n+1}$ are exchangeable⁶
- Then Hill's assumption states that

$$\underbrace{\overset{"}{}}_{\text{posited predictive prob}} \underbrace{(Y_{n+1} \in (y_{(i)}, y_{(i+1)}))}_{\text{posited predictive prob}} = \frac{1}{n+1}, \quad i = 0, \dots, n$$

- A symmetry-based y^n -dependent prob statement about Y_{n+1}
- This idea forms the basis of the framework Frank Coolen calls nonparametric predictive inference⁷

⁶i.e., joint distribution invariant to permutations of indices

⁷https://npi-statistics.com/

⁵Hill (*JASA* 1968)

NPI, cont.

- Note that Hill's assumption doesn't identify a single probability distribution for Y_{n+1}, given yⁿ
- Instead, it just gives bounds

$$\underline{\Pi}_{y^n}(Y_{n+1} \in A) = \frac{1}{n+1} \sum_{i=0}^n \mathbb{1}\{(y_{(i)}, y_{(i+1)}) \subseteq A\}$$
$$\overline{\Pi}_{y^n}(Y_{n+1} \in A) = \frac{1}{n+1} \sum_{i=0}^n \mathbb{1}\{(y_{(i)}, y_{(i+1)}) \cap A \neq \emptyset\}$$

These are posited/subjective probs...

However:

- prediction intervals: $[y_{(r)}, y_{(s)}]$ for $1 \le r < s \le n$
- by exchangeability,

$$\inf_{\text{exchangeable P}} \mathsf{P}\{Y_{n+1} \in [Y_{(r)}, Y_{(s)}]\} \geq \frac{r-s}{n+1}$$

- Vladimir Vovk did this in 1990s,⁸ recent interest in stat
- Exchangeable Y_1, \ldots, Y_n , goal is to predict Y_{n+1}
- Define a non-conformity measure, M(B; z), which measures how representative z is of the data in bag B
- For example: M(B; z) = |median(B) z|
- Needs to be symmetric in B, i.e., M does not depend on the order of the data in B

⁸Vovk, Gammerman, and Shafer (2010) book

Conformal prediction, cont.

Fix a candidate value y of Y_{n+1}, and write y_{n+1} = y
For i = 1,..., n, n + 1, evaluate

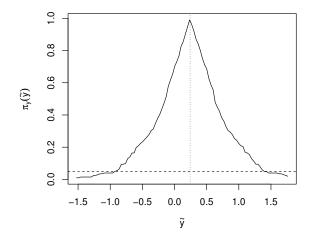
$$\mu_i(y) = M(\{y_1,\ldots,y_{n+1}\} \setminus \{y_i\}; y_i)$$

• Compute the "plausibility" of $Y_{n+1} = y$ as

$$\pi_{y^n}(y) = rac{1}{n+1} \sum_{i=1}^{n+1} \mathbb{1}\{\mu_i(y) \ge \mu_{n+1}(y)\}$$

Repeat this for "all" y values to get a $y \mapsto \pi_{y^n}(y)$ function

Conformal prediction, cont.



Conformal prediction, cont.

Theorem.

Define
$$C_{\alpha}(y^n) = \{y : \pi_{y^n}(y) > \alpha\}$$
. Then

$$\inf_{\text{exchangeable P}} \mathsf{P}\{C_{\alpha}(Y^n) \ni Y_{n+1}\} \geq 1 - \alpha, \quad \alpha \in [0, 1]$$

- Coverage guarantee uniformly over all (exchangeable) models!
 Imprecise probability connection:⁹
 - π_{y^n} defines a genuine contour function
 - defines a possibility measure $\overline{\Pi}_{y^n}(A) = \sup_{y \in A} \pi_{y^n}(y)$
 - satisfies a prediction-version of strong validity

$$\overline{\mathsf{P}}_{Y^{n},Y_{n+1}}\{\pi_{Y^{n}}(Y_{n+1}) \leq \alpha\} \leq \alpha, \quad \alpha \in [0,1]$$

⁹Cella and M., https://researchers.one/articles/20.01.00010

- Prediction is a fundamental problem, some say might be more important than inference
- Can be handled via IMs and imprecise prob more generally
- More complex problems considered next time
- Specific IM-related remarks:
 - ML-style model-free problems are a challenge for model-based methods, including (original) IMs, Bayes, fiducial, ...
 - validity required over a very large class
 - need some clever tricks to accommodate this
 - "generalized IM" ideas led to model-free IM solutions¹⁰

¹⁰Cella and M., https://researchers.one/articles/21.12.00004

Prediction with covariates

- regression
- classification
- Imprecise probabilistic methods

...