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Abstract

For the general problem of parametric statistical inference, several frequentist principles are
formulated, including principles of hypothesis testing, set estimation, and conditional inference.
These principles guarantee that, whatever the true parameter value, statistical procedures have
little chance of producing misleading inferences. The frequentist principles are shown to be
compatible with the likelihood principle and with principles of coherence. Two general methods
are studied which satisfy both the likelihood and frequentist principles in 1nite samples. One
method produces posterior upper and lower probabilities from a very large set of prior probability
measures, which can be taken to be an �-contamination neighborhood with � slightly larger than
1
2 . The second method derives inferences from a normalized version of the observed likelihood
function. Because inferences from the two methods encompass a wide range of frequentist,
likelihood and Bayesian inferences, they are conservative and they have relatively low power.
More powerful methods can be obtained by weakening the frequentist principles and making
weak assumptions about the sampling rule. The results show that there are methods of statistical
inference, based on particular types of imprecise probability model, which satisfy the likelihood
principle, are coherent, and have good frequentist properties under a range of sampling models.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Theories of statistical inference can be divided into two broad classes: those that
satisfy the likelihood principle, and those in which inferences have a frequentist or
repeated-sampling interpretation. Theories that satisfy the likelihood principle include
likelihood inference, Bayesian inference, robust Bayesian inference, and some theories
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of imprecise probability. In these theories, measures of uncertainty, such as posterior
probabilities or likelihood ratios, do not depend on the likelihoods of possible obser-
vations that did not occur. Frequentist theories include the Neyman–Pearson theory
of hypothesis testing and set estimation and Fisher’s theory of signi1cance testing. In
these theories, the uncertainty of inferences is measured by quantities such as p-values
or con1dence coeAcients, which are averages over possible data sets that might have
been observed. 1

In the case of interval estimation, for instance, a Bayesian or robust Bayesian proce-
dure for producing a 95% credible interval is de1ned so that the posterior probability
that the true parameter value belongs to the interval, with respect to a particular pos-
terior distribution or set of distributions, is at least 0.95. Such procedures may have
poor frequentist properties, in the sense that, under some possible parameter values,
the chance (frequentist probability) of obtaining a credible interval which covers the
true parameter value may be much less than 0.95.

On the other hand, a frequentist procedure for producing a 95% con1dence interval
is de1ned so that, before the statistical data are obtained, the chance of obtaining an
interval which will cover the true parameter value is at least 0.95, no matter what
the true parameter value may be. Such procedures may have poor properties from a
conditional point of view, e.g., it may be certain, after the data are obtained, that the
95% con1dence interval does not contain the true parameter value, or the procedure
may have ‘relevant subsets’ which suggest that a speci1c numerical interval is less
likely to contain the true value (Buehler, 1959; Robinson, 1979; Lehmann, 1986).
There is a similar diEerence in philosophy between the two approaches to hypothesis
testing.

There are strong arguments to support each approach. BrieFy, the 1rst approach is
supported by arguments in favor of the likelihood principle (Birnbaum, 1962; Basu,
1975; Berger and Wolpert, 1984) and principles of coherence (de Finetti, 1974; Walley,
1991). The main arguments in favor of the frequentist approach are that it gives a
physical interpretation to measures of uncertainty and it guarantees that, whatever the
true parameter value, statistical procedures have little chance of producing misleading
conclusions (Fisher, 1956; Birnbaum, 1969; Cox and Hinkley, 1974; Neyman, 1977).
For comparisons of the two approaches, see Barnett (1982), Kyburg (1974), and Cox
and Hinkley (1974).

It seems desirable to satisfy both the likelihood principle and frequentist principles.
However, it is widely believed that, in general, these principles are incompatible. This
belief seems to stem, at least in part, from work of Birnbaum. Birnbaum (1969, p.
114) distinguished two kinds of criteria for concepts of statistical evidence, which
correspond to the two approaches I have outlined, and summarized his conclusion

1 The most popular theories of statistical inference 1t into one of these two classes, but some methods do
not, e.g., JeEreys’ method of choosing a ‘noninformative’ prior distribution, which violates both likelihood
and frequentist principles, and apparently also Fisher’s 1ducial method.
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about their incompatibility:

It has seemed to some (including this writer) that any adequate concept of statis-
tical evidence must meet at least certain minimum versions of both of the criteria
just indicated. But the diAculties of developing such a concept have become in-
creasingly apparent, and it now seems rather clear that no such adequate concept
of statistical evidence can exist.

I share Birnbaum’s desire for a theory of statistical inference that satis1es ‘at least
certain minimum versions’ of both the likelihood and frequentist principles, but I be-
lieve that his negative conclusion was premature and not justi1ed by the examples he
discussed in his paper. Here is a simpli1ed version of the crucial example of Birnbaum
(1969, pp. 127–128).

Example 1.1 (Cox and Hinkley; 1974; pp. 51–52). Let the parameter space be �=
{0; 1; : : : ; 100}, let the sample space be X= {1; 2; : : : ; 100}, and de1ne the sampling
distribution P� to be the uniform probability distribution on X if �= 0, or the degen-
erate distribution at x = � if �= 1; 2; : : : ; 100. Then, whatever value of x is observed,
the likelihood function Lx satis1es Lx(x) = 1; Lx(0) = 0:01; and Lx(�) = 0 for all other
values of �. Let H0 denote the hypothesis that �= 0. If we use the generalized likeli-
hood ratio Lx(0)=sup{Lx(�): �∈�}= 0:01 to measure the strength of evidence against
H0 then, even if H0 is true, we are certain to obtain strong evidence against H0. These
inferences are incompatible with fundamental frequentist principles and with common
sense.

Although Birnbaum (1969, p. 126) seems to deny that inferences based on the likeli-
hood function must involve any particular measure of evidence in favor of a composite
hypothesis, in his example he implicitly used the generalized likelihood ratio as the
measure of evidence. There are other measures of evidence for a composite hypoth-
esis, to be studied in this paper, which give very diEerent answers in this problem
and which are consistent with frequentist principles. Under the contamination models
de1ned in Section 3 (Theorem 3.1), based on a uniform distribution Q, the posterior
upper probability for H0 is identical to its prior upper probability and is greater than 1

2 .
Under the normalized-likelihood models in Eq. (5.2) and in Section 5.4, the degree of
consistency of H0 with the data x is one, whatever value of x is observed. According
to these methods, which satisfy both the likelihood principle and frequentist princi-
ples, the data provide no evidence at all against H0. So the Birnbaum–Cox–Hinkley
example does not establish that the likelihood principle is incompatible with frequentist
principles.

My aims in this paper are to give a mathematical formulation of the likelihood
and frequentist principles and to show that there are very general statistical methods
which satisfy both criteria. The obvious diAculty in 1nding such methods is that fre-
quentist properties depend on the entire sampling model, whereas inferences which
satisfy the likelihood principle can depend only on the observed likelihood function.
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For a method which satis1es the likelihood principle to also satisfy the frequentist
properties, it must do so irrespective of how the sampling probabilities are de1ned
for unobserved data, e.g., irrespective of the stopping rule in the case of sequential
observations. I will show that this can be achieved by making suAciently cautious
inferences.

The approach that I adopt in most of this paper, excluding Section 5, is to derive
inferences from an imprecise probability model (Walley, 1991, 1999), which is based
on a set of prior probability distributions for the unknown parameter. Inferences are
made by 1rst applying Bayes’ rule to each prior distribution in the set, and then
computing upper and lower posterior probabilities by maximizing and minimizing over
the set. This is also the inference method used in robust Bayesian inference (Berger,
1994; Wasserman, 1997). But whereas robust Bayesians aim to model uncertainty about
a correct Bayesian prior distribution, and they regard the distributions in the basic set
as ‘plausible’ prior distributions, the aim here is to produce methods which satisfy
frequentist principles and there is no assumption that any prior probability distributions
are ‘plausible’. For discussion of the diEerences between these two approaches, see
Walley (1991, Sections 2:10, 5:9) and Pericchi and Walley (1991).

The imprecise probability models studied here can be regarded as ways of reconciling
frequentist, likelihood and Bayesian inferences. Inferences from an imprecise probabil-
ity model automatically satisfy the likelihood principle and principles of coherence, and
I will show that the basic frequentist principles can be satis1ed by choosing the set of
prior distributions to be suAciently large. For example, 95% credible sets are de1ned
to have posterior probability at least 0.95 with respect to every prior distribution in the
set, and therefore they are valid (but conservative) Bayesian 95% credible sets under a
range of diEerent prior distributions. If the set of prior distributions is suAciently large
then the 95% credible sets can also be shown to be valid (but conservative) frequentist
95% con1dence regions under a range of diEerent sampling models. They can also
be chosen to be likelihood sets (a set of parameter values whose likelihood exceeds
a threshold). Similarly, in testing any null hypothesis (simple or composite), the con-
sistency values produced by these methods are upper bounds for certain frequentist
p-values, for the generalized likelihood ratio, and for a range of Bayesian posterior
probabilities.

Of course, there have been many previous attempts to reconcile diEerent statistical
theories. As far as I am aware, none of these previous studies have considered the
possibility that the frequentist and likelihood principles could be satis1ed simultane-
ously in very general settings. There is a large literature on two particular kinds of
reconciliation. The 1rst body of work concerns exact agreement between frequentist
and Bayesian (or likelihood or 1ducial) inferences for particular types of paramet-
ric sampling model; see Lindley (1958), Welch and Peers (1963), Thatcher (1964),
Bartholomew (1971), Edwards (1972, Chapter 9), Box and Tiao (1973), and Chang and
Villegas (1986). For example, frequentist inferences about a real-valued location param-
eter, conditional on a maximal ancillary statistic, formally agree with Bayesian infer-
ences based on an improper uniform prior density and with 1ducial inferences (Fisher,
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1934; Cox and Hinkley, 1974, p. 221). But such results are very limited. Consider, for
example, a random sample from a normal distribution with known variance. Provided
the sample size is 1xed, standard frequentist inferences about the mean are formally
the same as Bayesian inferences based on a uniform prior density. But if the sample
size may depend on the observations then, in general, frequentist inferences will vary
with the stopping rule, to satisfy frequentist principles, whereas Bayesian inferences,
in order to satisfy the likelihood principle, cannot depend on the stopping rule.

The second large body of work concerns asymptotic agreement between frequentist,
Bayesian and likelihood inferences as the sample size tends to in1nity, and the use
of one inference method to approximate another. See, for example, Welch and Peers
(1963), Pratt (1965), Dawid (1991), Fraser (1991), Severini (1991), Efron (1993),
Nicolaou (1993), and Datta and Ghosh (1995). This work shows that, under some
restrictive assumptions, there are methods that satisfy both the frequentist and likeli-
hood principles asymptotically (Dawid, 1991). However, these asymptotic results are of
doubtful relevance to 1nite samples. The methods studied in this paper satisfy both the
frequentist and likelihood principles in very general settings and for all 1nite sample
sizes, not just asymptotically or approximately.

The paper is organized as follows. Section 2 presents a mathematical formulation
of the likelihood principle and 1ve frequentist principles, and characterizes the close
relationships between the frequentist principles. Two general methods which satisfy
both the likelihood and frequentist principles are described. The 1rst method, de1ned
in Section 3, produces posterior upper and lower probabilities from a very large set of
prior probability measures, which is taken to be an �-contamination neighborhood with
� slightly bigger than 1

2 . Some examples of these inferences are given in Section 4. A
second method, in which inferences are based on a normalized version of the observed
likelihood function, is described in Section 5. Because inferences from the two methods
encompass a wide range of frequentist and Bayesian inferences, they have relatively
low power. It is possible to obtain more powerful inferences in particular problems,
one of which is discussed in Section 6, by weakening the frequentist principles and
making weak assumptions about the sampling model. One way of generalizing that
approach is outlined in the concluding Section 7.

2. Some principles of statistical inference

We are concerned with the standard problem of parametric statistical inference: it
is known or assumed that statistical data x are generated by a sampling model which
belongs to a family {P�: �∈�}, where � is a parameter which indexes the possible
sampling models P� and � is the parameter space, and we wish to draw some conclu-
sions from x concerning the true sampling model or (equivalently) the true parameter
value. Throughout the paper I use the term chance to refer to the probability of an
event under the true sampling model P�. Such a probability can be interpreted as a
physical propensity or as a long-run relative frequency.
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Let X denote the random variable (possibly multidimensional) whose observed value
is x. Assume that each possible sampling model P� is a probability measure de1ned
on A(X), a -1eld of subsets of the sample space X which includes all the singleton
sets {x}. I also assume that a -1nite measure � is de1ned on A(X), each probability
measure P� has a probability density function f� with respect to �, and f�(x) is
measurable as a function of (�; x) with respect to the product -1eld A(�)×A(X).
Here A(�) is a -1eld of subsets of � which contains all the subsets of interest,
including all the singleton sets {�}. Apart from these regularity assumptions, there are
no restrictions on the sample space, parameter space or sampling models.

2.1. Consistency functions

The 1rst task is to formalize the two criteria for evaluating statistical methods that
were outlined in the introduction. To do so I shall assume that, after observing data
x, the conclusions of statistical inference are summarized in the form of a consistency
function �(·|x), where the nonnegative real number �(A|x) is de1ned for all subsets
A∈A(�). To simplify the notation I write �(�|x) instead of �({�}|x).

For A∈A(�), let HA denote the hypothesis that the true parameter value � belongs
to the set A. I shall call �(A|x) the degree of consistency between the hypothesis
HA and the data x. It could also be interpreted as the (inverse) strength of evidence
against HA provided by the data x, or as the plausibility of HA given data x. These three
interpretations are mutually compatible: lower consistency of HA with x corresponds
to stronger evidence against HA and to lower plausibility of HA given x. In particular,
if the data x provide no real evidence for discriminating between HA and its negation
then both �(A|x) and �(Ac|x) may be high, meaning that both hypotheses are consistent
with the data and both hypotheses are plausible given the data.

For the inference methods studied later in this paper which are based on imprecise
probability models, �(A|x) is taken to be the posterior upper probability of HA given x,
which has another, more practical, interpretation as a posterior betting rate for betting
against HA: lower consistency of HA with x corresponds to oEering longer odds against
HA after observing x. 2 When both �(A|x) and �(Ac|x) are high, we are unwilling to
bet against either hypothesis. For the inference method studied in Section 5, �(A|x) is
the maximum value of a normalized likelihood function that is attained on A.

Other types of consistency function are possible. For example, �(A|x) could be
taken to be a frequentist p-value for testing HA: �∈A (which is often regarded as

2 The term ‘plausibility’ is sometimes used as a synonym for ‘upper probability’ (Shafer, 1976), but it
suggests, to some people, a subjective or psychological concept, whereas �(A|x) is intended to be objective.
The term ‘consistency’ is widely used in the frequentist interpretation of p-values, whereas ‘plausibility’
and ‘upper probability’ are used in approaches based on the likelihood principle (imprecise probability and
robust Bayesian theory). Each of these terms is appropriate here, since the functions �(·|X ) are required to
satisfy both the likelihood principle and the frequentist properties of p-values, but it may be preferable to
use a term that is neutral between the frequentist and likelihood approaches. The term ‘strength of evidence’
does seem to be neutral, but it could be misleading because it is inversely related to �(A|x), i.e. higher
values of �(A|x) represent weaker evidence. On balance, I have chosen to use the term ‘consistency’.
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a measure of the consistency of the null hypothesis with the data), a Bayesian pos-
terior probability P(A|x), or the generalized likelihood ratio for testing HA. How-
ever, these three alternative measures do not satisfy, in general, all the frequentist
and likelihood properties that I shall require of �(·|X ). The two types of consistency
function to be studied in Sections 3–5 are essentially upper bounds for the three al-
ternative measures, i.e., they produce higher degrees of consistency and more cautious
inferences.

In order to de1ne frequentist properties of the consistency function, I assume that
[�(A|X )6 �] = {x∈X: �(A|x)6 �} is in A(X) whenever A∈A(�) and 06 �6 1.
I also assume the monotonicity condition

�(�|x)6 �(A|x) whenever �∈A; A∈A(�) and x∈X: (2.1)

2.2. Likelihood principle

Given data x, de1ne the observed likelihood function Lx on � by Lx(�) =f�(x).
According to the likelihood principle, Lx can be replaced by any positive multiple cLx

without changing inferences. 3

The 1rst approach to statistical inference that was discussed in the introduction is
based on the likelihood principle, which can be formalized as follows.

LP: Suppose that either of two experiments can be performed and the sampling model
for each experiment is completely determined by the same unknown parameter �. If
x and y are possible outcomes of the experiments whose corresponding likelihood
functions are proportional, then the consistency functions �(·|x) and �(·|y) that would
result from each outcome should be identical. That is, if Lx ˙ Ly then �(·|x) = �(·|y).

Essentially, LP tells us that the consistency function �(·|x), which summarizes the
inferences from data x, should depend on the sampling model and data only through
the observed likelihood function Lx. There are strong arguments in favor of LP. For
example, LP is implied by suAciency and conditionality principles (Birnbaum, 1962),
and by general principles of coherence (Walley, 1991, Section 8:6). Other arguments
in favor of LP are discussed in Basu (1975) and Berger and Wolpert (1984). All the
methods studied later in the paper satisfy LP.

3 Strictly, ‘the likelihood function’ should be regarded as an equivalence class of mutually proportional
functions. Unless the sample space X is discrete, diAculties can arise from the nonuniqueness of Lx: a
probability density function f� can be changed on a zero-probability subset of X without changing the
probability distribution P�. To reduce these diAculties, in problems where a continuous sample space is an
idealization of a discrete measurement process, f�(x) should be de1ned not as a Radon–Nikodym derivative,
but as a limit of normalized probabilities of decreasingly small neighbourhoods of x which correspond to
the discrete measurement process (Walley, 1991, Section 8:6). In most practical applications where x is
a vector of real-valued observations xi , each f�(xi) is taken to be the derivative at xi of the cumulative
distribution function of Xi under P�, which usually exists at all except 1nitely many points xi . To avoid
diAculties arising from any remaining nonuniqueness of Lx; f�(x) should be chosen in a consistent way
across comparable sampling models, to allow the likelihood principle to be applied (e.g. see Section 2.7).
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2.3. Fundamental frequentist principle

The most fundamental frequentist principle appears to be the following: whatever
the true value of the parameter �, there should be little chance of obtaining data
x that have low degree of consistency �(�|x) with the true �. Many authors have
suggested similar principles, including the ‘con1dence concept’ of Birnbaum (1969,
1977), the ‘repeated sampling principles’ of Cox and Hinkley (1974), the motivation
for signi1cance testing in Fisher (1956), and the motivation for the Neyman–Pearson
approach to hypothesis testing and interval estimation in Neyman (1977). See also
the ‘production principle’ of Dawid (1991). I do not know whether there have been
previous attempts to formulate these principles mathematically. One way to do so, and
to give a frequentist interpretation to low degrees of consistency, is to require that, for
any suAciently small value of � and whatever the true parameter value �, the chance
of obtaining data x under which �(�|x) is no greater than � should be no greater than
�. We therefore require the following fundamental frequentist principle:

FFP: P�[�(�|X )6 �]6 � whenever �∈� and 06 �6 �0:

The main argument for FFP is that it guarantees that there is little chance of making
a misleading inference by declaring that a parameter value is ‘inconsistent with the
data’ when it happens to be the true value. The reason for including the restriction
�6 �0 is that the argument applies only to small consistency values, which (unlike
probabilities) are not symmetric with large consistency values. The following argument
shows that consistency values behave like p-values, which are interpreted as signi1cant
evidence against a null hypothesis only when they are suAciently small, which usually
means smaller than 0:1. Similarly, in set estimation, con1dence coeAcients are usually
chosen to be at least 0:9 = 1− 0:1. To be consistent with the usual types of frequentist
inference, it therefore suAces to take �0 = 0:1 in FFP. Of course, larger values of �0,
producing stronger versions of FFP, can also be used.

A second argument for FFP is that it gives an operational meaning and calibration
to degrees of consistency, in terms of long-run frequencies. By substituting �= �(�|x),
FFP implies that, when �(�|x)6 �0, the observed degree of consistency �(�|x) has
the well known property of p-values: whatever the true parameter value, the chance of
obtaining a degree of consistency no greater than the observed value �(�|x) is no greater
than �(�|x). If this kind of calibration is required to hold across the whole consistency
scale, we need �0 = 1 in FFP. Such a requirement is not compelling, however, because
of the asymmetry between low and high consistency values. Of the two methods studied
later in the paper, the 1rst requires �0¡1 but the second has �0 = 1.

Frequentist properties such as FFP can be interpreted in terms of repeated sampling
from the same sampling model, or more generally in terms of repeated use of sta-
tistical methods. Suppose that a method for calculating a consistency function �(·|x)
is used in a long run of applications, where the data are independent across diEerent
applications. Provided the method satis1es FFP, it follows from the weak law of large
numbers that, with chance arbitrarily close to one when the number of applications is
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suAciently large, the proportion of applications in which the true parameter value has
low degree of consistency will be small, irrespective of the true parameter value in each
application.

2.4. Hypothesis testing

FFP is essentially concerned with testing the simple null hypothesis that � is the true
parameter value: it tells us that, when this hypothesis is true, there is no more than
a small chance that the data will be inconsistent with it. This can be extended from
simple to composite hypotheses. Consider the completely general (simple or composite)
hypothesis HA: �∈A, where A is a nontrivial subset of � and A∈A(�). To test HA

we calculate �(A|x), which measures the consistency of HA with the data x. (Usually,
we would also want to measure the consistency of the complementary hypothesis by
calculating �(Ac|x).) The next principle is called the hypothesis testing principle:

HTP: P�[�(A|X )6 �]6 � whenever �∈A; A∈A(�) and 06 �6 �0:

Since smaller values of �(A|x) represent lower consistency and therefore stronger
evidence against HA, HTP tells us that, if HA is true, the chance of obtaining such strong
evidence against HA as we actually observed was no greater than �(A|x). Thus �(A|x)
has the standard property of p-values. Indeed we can regard �(A|x) as a test statistic
for testing HA and de1ne the p-value of the test to be sup�∈A P�[�(A|X )6 �(A|x)].
Then HTP requires that, at least when �(A|x)6 �0; �(A|x) is an upper bound for this
p-value. 4 This ensures that we will declare HA to be ‘inconsistent with the data’ only
when there is strong evidence against it, in the frequentist sense that the test has a
small p-value. Alternatively, if we adopt the Neyman–Pearson formulation and we
reject HA at level � if and only if �(A|x)6 �, where � is a suitably low threshold,
HTP guarantees that if HA is true then the chance of rejecting it at level � is at
most �.

It will be shown in Sections 2.7 and 4.3 that, assuming LP and HTP, �(A|x) is
an upper bound for the p-values from certain conditional tests of HA and for the
generalized likelihood ratio statistic, whenever �(A|x)6 �0.

2.5. Set estimation

Say that the random set C(X ) is a set estimator for � when C(x)∈A(�) for all
x∈X, and [�∈C(X )] = {x∈X: �∈C(x)}∈A(X) for all �∈�. There are several
properties that a set estimator may be expected to satisfy. The 1rst property is that,
after observing x, there should be strong evidence that C(x) contains the true parameter
value; or, in terms of consistency, the hypothesis that C(x) does not contain the true

4 Note that �(A|x) is not necessarily an upper bound for the p-values obtained from other frequentist tests
of HA, because the frequentist test statistic may produce a very diEerent ordering of X from �(A|x), and
diEerent orderings generally produce diEerent p-values. But the values �(A|x) produced by the two methods
in Sections 3 and 5 do seem to be upper bounds for many standard frequentist p-values.
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value should be inconsistent with the data x. A second property is that C(x) should
contain all the parameter values that are reasonably consistent with x, i.e., whose degree
of consistency exceeds a suitable threshold. These two properties correspond to two
diEerent ways of de1ning a credible set and are formalized below. They are based on
the likelihood principle, since they refer only to the observed data x. A third property,
from a frequentist point of view, is that the set estimator C(X ) should have a high
chance of containing the true parameter value, whatever the true value may be. The
following principles WSEP and SSEP require that set estimators which are constructed
to satisfy one of the 1rst two properties must also satisfy the frequentist property.

When A∈A(�), the quantity 1−�(Ac|x) is called the credibility of the set A (given
x). A set estimator for � is called a credible set estimator at credibility level 1 − �
when the credibility of C(x) is at least 1− �, i.e., �(C(x)c|x)6 �, for all x∈X. Thus
C(x) is said to be a credible set estimate for � when the hypothesis that C(x) does
not contain the true parameter value is suAciently inconsistent with the data x.

A set estimator for � is called a con5dence set estimator at con5dence level 1 − �
when P�[�∈C(X )]¿ 1 − � for all �∈�. A natural frequentist requirement is that
a credible set estimator should have a high chance of including the true value of �,
whatever it may be. That suggests the following weak set estimation principle.

WSEP: If C(X ) is a credible set estimator for � at credibility level 1 − �, where 06 �
6 �0, then C(X ) should be a con1dence set estimator for � at con1dence level 1 − �.

If �0¿ 0:05, for instance, WSEP ensures that when we use a 95% credible set
estimator, the chance that it will cover the true parameter value is at least 0.95, whatever
the true value may be. If we apply such estimators in a long run of independent
problems, they will be successful in at least 95% of cases. Again this gives a frequentist
interpretation to degrees of consistency.

A second way to construct a credible set for �, using the well known connection
between set estimation and hypothesis testing, is to include � in a credible set (at level
1− �) if and only if we would not reject (at level �) the null hypothesis that � is the
true parameter value, which is equivalent to the condition �(�|x)¿�. This produces the
credible set C∗(x) = {�∈�: �(�|x)¿�}, the set of all parameter values whose con-
sistency with the data exceeds the threshold �. The proof of Theorem 2.1 shows that,
assuming (2.1), every credible set estimate for � at credibility level 1−� must contain
C∗(x), but C∗(x) itself is not necessarily a credible set estimate for � at level 1 − �.
However, it is still possible to require that C∗(X ) be a con1dence set estimator for �
at con1dence level 1 − �, as in the following strong set estimation principle.

SSEP: If C∗(x) = {�∈�: �(�|x)¿�} for all x∈X, where 06 �6 �0, then C∗(X )
should be a con1dence set estimator for � at con1dence level 1 − �.

2.6. Relationships between the frequentist principles

The four frequentist principles in the preceding subsections are closely related.



P. Walley / Journal of Statistical Planning and Inference 105 (2002) 35–65 45

Theorem 2.1. Given the sampling models {P�: �∈�}; suppose that a consistency
function �(·|x) is de5ned for each x∈X. Then FFP is equivalent to SSEP. Assuming
that the monotonicity condition (2:1) holds; FFP; HTP and SSEP are equivalent and
each implies WSEP.

Proof. Using the equation P�[�∈C∗(X )] =P�[�(�|X )¿�] = 1 − P�[�(�|X )6 �], it
follows that SSEP is equivalent to FFP.

By taking A= {�} in HTP, it is clear that HTP implies FFP. Assuming the mono-
tonicity condition (2.1), if �∈A then P�[�(A|X )6 �]6P�[�(�|X )6 �], and therefore
FFP implies HTP.

To show that, given (2.1), SSEP implies WSEP, suppose that C(X ) is a credible
set estimator for � at credibility level 1 − �, where 06 �6 �0. Using (2.1), it fol-
lows that, whenever x∈X and �∈C(x)c; �(�|x)6 �(C(x)c|x)6 �. Hence C(x)c ⊆
{�∈�: �(�|x)6 �}, i.e., C(x) ⊇ C∗(x) = {�∈�: �(�|x)¿�}, for all x∈X. Thus
C(X ) contains C∗(X ). By SSEP, C∗(X ) is a con1dence set estimator for � at con1-
dence level 1 − �, hence so is C(X ). This establishes WSEP.

The inference methods studied in this paper all satisfy the monotonicity condition
(2.1). Theorem 2.1 shows that it is enough to verify that these methods satisfy FFP.

2.7. Conditional inference

The sampling probabilities involved in the preceding frequentist principles are un-
conditional probabilities. It is widely accepted amongst frequentist statisticians that, in
many statistical problems, sampling probabilities should be calculated conditionally on
the value of an appropriate ancillary statistic; see Fisher (1956), Cox (1958, 1988), Cox
and Hinkley (1974), Seidenfeld (1979) and Lehmann (1986). A statistic T :X → T is
called an ancillary statistic if its sampling distribution under P� does not depend on �.
The value of an appropriate ancillary statistic determines a subsequence of repetitions
of the statistical experiment in which “the long run of trials considered is like the data”
(Cox and Hinkley, 1974, p. 49).

This suggests that we should modify FFP, by replacing the unconditional sampling
probabilities by probabilities conditional on an ancillary statistic, to give the conditional
frequentist principle:

CFP: If T :X → T is any ancillary statistic, then P�[�(�|X ) 6 �|T (X ) = t]6 � when-
ever �∈�; t ∈T and 06 �6 �0.

The following theorem shows that, if an inference method satis1es LP, then FFP
and CFP are equivalent. To simplify the statement and proof of the theorem, I assume
that we use a particular version of the likelihood function, 5 which is not uniquely
de1ned when P�({x}) = 0. Given a sampling model P� and any t ∈T, de1ne a new

5 This assumption can be dropped if we allow the constraint on error probabilities in CFP to be violated
on a subset of T that has probability zero.
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sampling model Pt
� on the same sample space X by conditioning P� on the event that

T (X ) = t. Thus Pt
�(B) =P�[B|T (X ) = t] for all B∈A(X). Because T is ancillary, if

T (x) = t then the likelihood function generated by Pt
� can be taken to be proportional

to that generated by P�. If P� and T have probability density functions f� and g,
respectively, where g is independent of � since T is ancillary, then Pt

� has probability
density function ft

�(x) =f�(x)=g(t) whenever T (x) = t and g(t)¿0. Hence ft
�(x) ˙

f�(x), so that Pt
� and P� generate proportional likelihood functions (given x), whenever

T (x) = t and g(t)¿0. When g(t) = 0, which has probability zero under each P�, the
likelihood function for Pt

� is taken to be proportional to the likelihood function for P�

(given x). Because of this proportionality, LP implies that the two sampling models
Pt
� and P� must produce the same inferences.

Theorem 2.2. Consider an inference method that produces a consistency function
�(·|X ) for any given sampling model with parameter �. If the method satis5es the
constraint in CFP for some statistic T (which need not be ancillary) then it also sat-
is5es FFP. If the method satis5es LP and FFP then it satis5es CFP. Thus; assuming
that the method satis5es LP; CFP is equivalent to FFP.

Proof. Suppose that CFP holds for some T , so P�[�(�|X )6 �|T (X ) = t]6 � for all
t ∈T. The unconditional sampling probability can be expressed as the expected value
of the conditional probability, averaged over all possible values of t, and therefore
P�[�(�|X )6 �]6 �. Thus FFP holds.

To prove the second statement, suppose that P� is a sampling model on X and
T :X → T is an ancillary statistic. De1ne a new sampling model Pt

� by Pt
�(B) =

P�[B|T (X ) = t] for all B∈A(X). Let �(�|x) and �t(�|x) denote the consistency func-
tions generated by data x when the inference method is applied to the respective sam-
pling models P� and Pt

�. When x∈X and T (x) = t, the two sampling models generate
proportional likelihood functions, so that LP implies �t(�|x) = �(�|x) for all �∈�.
Hence, whenever �∈�; t ∈T and 06 �6 �0,

P�[�(�|X )6 �|T (X ) = t] =P�[�t(�|X )6 �|T (X ) = t] =Pt
�[�

t(�|X )6 �]6 �;

by applying FFP to the sampling model Pt
�. Thus �(·|X ) satis1es CFP.

Conditional versions of the other frequentist principles (HTP, WSEP, SSEP) can
be formulated in a similar way to FFP, by conditioning the sampling probabilities on
T (X ) = t. For inference methods that satisfy LP, each conditional frequentist principle
is equivalent to its unconditional version. (That can be proved by modifying the proof
of Theorem 2.2.) For the inference methods considered in this paper, which satisfy LP,
it therefore does not matter whether we evaluate the frequentist sampling probabilities
unconditionally, or conditionally on some ancillary statistic. In studying these methods,
there is no need to select a particular ancillary statistic T or to explicitly consider
conditional frequentist properties.
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As in Section 2.4, HTP and LP together imply (through the conditional version
of HTP) that, when A∈A(�) and �(A|x)6 �0, �(A|x) is an upper bound for the
p-values of certain conditional tests of HA: �∈A, in which the test statistic is �(A|x)
and the p-values are conditional on the observed value of any ancillary statistic.

The conditional version of WSEP says that, if C(X ) is a credible set estimator
for � at credibility level 1 − �; 06 �6 �0, and T is any ancillary statistic, then
P�[�∈C(X )|T (X ) = t]¿ 1 − � whenever �∈� and t ∈T. The well-known concept
of a relevant subset (Buehler, 1959; Robinson, 1979; Lehmann, 1986; Walley, 1991,
Section 7:5) involves a similar type of conditioning, but on a subset of X rather than
an ancillary statistic. Let C(X ) be a credible or con1dence set estimator for � at level
1−�. A subset B∈A(X) is called a negatively biased relevant subset for C(X ) when
P�(B)¿0 for all �∈� and sup{P�[�∈C(X )|X ∈B]: �∈�}¡1 − �. The frequentist
interpretation (Fisher, 1956) is that B determines a recognizable subsequence of rep-
etitions of the experiment (those in which B occurs) in which the limiting relative
frequency of coverage of C(X ) is uniformly smaller than 1 − �. Typically, the indi-
cator function of B is not an ancillary statistic because P�(B) depends on �, so the
conditional version of WSEP does not rule out the possibility of negatively biased
relevant subsets. But if degrees of consistency �(·|x) are identi1ed with the posterior
upper probabilities P(·|x) from some coherent model, as in Section 3, and C(X ) is a
credible set estimator for � at credibility level 1 − �, then there cannot be any nega-
tively biased relevant subset for C(X ). That can be proved by modifying the proof of
Lemma 7:5:6 of Walley (1991), to show that if there was a negatively biased relevant
subset then the assessments P(C(x)|x)¿ 1 − � (for all x∈X) would be incoherent.

3. Contamination neighborhoods

Let Q be any probability measure on A(�) such that 0¡
∫
� Lx(�)Q(d�)¡∞ for

all x∈X. We could regard Q as a prior probability measure and use it to calculate
Bayesian inferences; these inferences would satisfy LP, but they would not satisfy
the frequentist principles in general. However, we can satisfy the frequentist princi-
ples by replacing the single probability measure Q by a suitably large neighborhood
of it.

In this section I study the inferences produced by an �-contamination neighborhood
of Q (Huber, 1973; Berger and Berliner, 1986). This is de1ned to be the set of all
probability measures of the form (1 − �)Q + �P where � is 1xed (0¡�¡1) and P
can be any probability measure on A(�). The �-contamination neighborhood assigns
weight 1 − � to the probability measure Q and allows the remaining probability �
to be distributed anywhere on �. The �-contamination neighborhoods are also called
gross error models (Huber, 1973) and linear-vacuous mixtures (Walley, 1991). These
models are used in both frequentist and Bayesian studies of robustness (Huber, 1981;
Berger and Berliner, 1986; Pericchi and Walley, 1991), and they are natural candidates
to reconcile frequentist properties with coherence and the likelihood principle.
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3.1. Posterior upper and lower probabilities

The posterior probability of any set A in A(�) is maximized by assigning the free
probability � to a point � in A which maximizes the observed likelihood Lx(�) over A.
The maximized posterior probability, which is called the posterior upper probability
of A, is therefore given by the formula

P(A|x) =

∫
A Lx(�)Q(d�) + � sup{Lx(�): �∈A}∫
� Lx(�)Q(d�) + � sup{Lx(�): �∈A} (3.1)

for all A∈A(�), where �= �=(1 − �). An equivalent formula was given by Huber
(1973). The conjugate lower probabilities are de1ned by

P(A|x) = 1 − P(Ac|x) =

∫
A Lx(�)Q(d�)∫

� Lx(�)Q(d�) + � sup{Lx(�): �∈Ac} : (3.2)

It is possible that sup{Lx(�): �∈A}=∞ in these formulae, since Lx may be
unbounded. In that case, use the conventions ∞=∞= 1, and k=∞= 0 if k is 1nite.

An upper probability P(A|x) can be interpreted as a marginally acceptable betting
rate for betting against A, after observing the data x. This behavioral interpretation
is compatible with the more abstract interpretations of �(A|x) that were suggested in
Section 2.1: P(A|x) measures the degree of consistency between x and HA: �∈A, or
the plausibility of HA after observing x, and it is inversely related to the strength of
evidence against HA. I therefore identify P(·|x) with the consistency function �(·|x)
considered in Section 2.

An important property of the �-contamination model is that, under the previous
regularity assumptions, the inferences produced by formulae (3.1) and (3.2) satisfy
strong properties of coherence; see Walley (1991, Theorem 7:8:1).

3.2. Frequentist properties

The following theorem shows that the likelihood and frequentist principles of
Section 2 are satis1ed when � is suAciently large.

Theorem 3.1. For each A∈A(�); de5ne the degree of consistency �(A|x) =P(A|x)
to be the posterior upper probability (3:1) produced by an �-contamination neighbor-
hood of Q; where �¿ (2− �0)−1. Then inferences satisfy LP and the 5ve frequentist
principles in Section 2: FFP; HTP; WSEP; SSEP and CFP.

Proof. Inferences (3.1) satisfy LP, since P(A|x) depends on {P�: �∈�} only through
Lx and is unchanged when Lx is multiplied by a positive constant. To verify FFP, use
(3.1) to give

P({�}|x) =
[Q({�}) + �]Lx(�)∫

� Lx( )Q(d ) + �Lx(�)
¿

�Lx(�)∫
� Lx( )Q(d ) + �Lx(�)

:
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Hence P({�}|x)6 � implies that Lx(�)6 �−1(�=(1 − �))
∫
� Lx( )Q(d ). Let B(�) =

{x∈X: P({�}|x)6 �}. Using Lx(�) =f�(x) and
∫
X
f (x)�(dx) = 1 (since f is a

probability density function with respect to �), and using Fubini’s Theorem to change
the order of integration,

P�[P({�}|X )6 �] =
∫
B(�)

f�(x)�(dx)

6
∫
B(�)

�−1
(

�
1 − �

)∫
�
f (x)Q(d )�(dx)

6 �−1
(

�
1 − �

)∫
X

∫
�
f (x)Q(d )�(dx)

= �−1
(

�
1 − �

)∫
�

∫
X

f (x)�(dx)Q(d )

= �−1
(

�
1 − �

)
=
(

1 − �
�

)(
�

1 − �

)

6 (1 − �0)
(

�
1 − �

)
6 �;

using �¿ (2 − �0)−1 and 06 �6 �0 for the last two inequalities. Thus FFP holds.
Also upper probabilities satisfy the monotonicity condition (2.1). Using Theorems 2.1
and 2.2, inferences satisfy the other frequentist principles HTP, WSEP, SSEP and
CFP.

It is remarkable that the suAcient condition for the frequentist principles, �¿
(2−�0)−1, is independent of both the sampling models and the probability measure Q.
For example, Q can be taken to be a degenerate distribution which assigns probability
one to a point �0, provided Lx(�0)¿0 for all x∈X.

The lower bound �0 = (2 − �0)−1 in Theorem 3.1 is the sharpest possible bound
that is independent of the size of �. If � is any continuous parameter space, L is
any bounded likelihood function on �, Q is any continuous probability distribution
on �, and inferences are calculated from an �-contamination neighborhood of Q with
�¡�0, then there are ‘unfavorable’ sampling models which could have generated the
given likelihood function L but for which FFP is not satis1ed (Walley, 1998, Example
4:3). For continuous �, it is therefore not possible to improve the lower bound in
Theorem 3.1 by exploiting the observed likelihood function or by choosing a particular
distribution Q.

The lower bound �0 can be improved when � has 1nite cardinality r. Let Q be the
uniform probability distribution on �, which is optimal in the sense that it minimizes
the threshold value �′0 below. Then the proof of Theorem 3.1 can be modi1ed to show
that inferences from an �-contamination neighborhood of Q satisfy LP, FFP and the
other frequentist principles, provided that �¿ �′0 = (r − 2 + �0)=(r − 1)(2 − �0). Here
�′0 is an increasing function of �0 and of r. It is smaller than the lower bound �0 in
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Theorem 3.1 and approaches �0 as r → ∞, but �′0 can be much smaller than �0 when
r is small, e.g., when r = 2 and �0 = 0:1, �0 = 10=19 but �′0 = 1=19. See Walley and
Moral (1999) for other properties of these models in the case of 1nite �.

3.3. Choice of �0 and Q

Inferences are quite insensitive to the choice of �0 and Q. The value �0 = 0:1, which
reFects the usual practice in frequentist inference of regarding p-values as signi1cant
evidence only when they are smaller than 0:1, gives �0 = (2−�0)−1 = 10

19 , slightly bigger
than 1

2 . The corresponding value of � is �0 = (1− �0)−1 = 10
9 . It makes little diEerence

to inferences if �0 is changed from 0:1 to 0:2; 0:05 or 0: the eEect is to change � in
(3.1) from 10

9 to 5
4 , 20

19 or 1. It is necessary that �0¡1, since �0 = 1 gives �0 = 1 and
vacuous inferences.

Whatever positive value of �0 is used, � must be greater than 1
2 and � greater than 1.

Under any such �-contamination model, every simple hypothesis {�} has prior upper
probability greater than 1

2 , since P({�}) = (1 − �)Q({�}) + �¿ �¿ 1
2 for all �∈�. In

behavioral terms, this means that we are initially unwilling to bet against any point
hypothesis unless the odds are better than even money. This is a kind of prior ignorance
property. It indicates that the set of prior probability measures is very large and that
prior beliefs about the parameter are very cautious.

Inferences are also insensitive to the choice of Q. Because the �-contamination neigh-
borhoods are so large when �¿ 1

2 , any two measures Q1 and Q2 produce overlapping
neighborhoods and compatible inferences. It may seem that the choice of Q introduces
a subjective element into the model, contrary to frequentist aims. But Q could be de-
termined objectively, e.g., by taking it to be a uniform probability distribution when
the parameter space is 1nite or bounded. It is unclear how Q should be chosen for
unbounded parameter spaces. In any case, the frequentist properties hold irrespective
of Q.

3.4. Hypothesis testing and set estimation

When � is a continuous space and Q has no point masses, the consistency func-
tion is

P({�}|x) =
Lx(�)

�−1
∫
� Lx( )Q(d ) + Lx(�)

: (3.3)

This is an order-preserving transformation of the likelihood function Lx. The parameter
value with maximum degree of consistency is the maximum likelihood estimate. When
� is real valued, (3.3) can be graphed to show the posterior plausibilities of simple
hypotheses.

To test a hypothesis HA: �∈A using the contamination model, we simply calculate
P(A|x), using (3.1) with �= (1 − �0)−1, and interpret it as a marginally acceptable
betting rate for betting against HA after observing x. If P(A|x) is small then there is
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strong evidence against HA, both in the frequentist sense that a particular test of HA has
p-value less than or equal to P(A|x) (Section 2.4), and in the robust Bayesian sense
that the posterior probability of HA, under any prior distribution in the contamination
class, is less than or equal to P(A|x).

In this approach, simple (point) hypotheses do not require any diEerent treatment
from composite hypotheses. For every null hypothesis HA, P(A|x) is an upper bound
for a frequentist p-value for testing HA. That can be achieved even for a simple
hypothesis H0: �= �0 because, by (3.1), the contamination model assigns a positive
value to P({�0}|x) whenever Lx(�0)¿0.

There are two ways to construct level 1− � con1dence sets from the contamination
model. The simpler method, and the one which produces smaller sets, is to de1ne

C∗(x) = {�∈�: P({�}|x)¿�}; (3.4)

where P({�}|x) is computed from (3.1) using �= (1 − �)−1. When Q has no point
masses, P({�}|x) is given by (3.3) and we obtain

C∗(x) =
{
�∈�: Lx(�)¿�

∫
�

Lx( )Q(d )
}

: (3.5)

Thus C∗(x) consists of those parameter values whose likelihood exceeds a threshold.
Such sets are called likelihood sets, so I call C∗(x) a likelihood con5dence set. Because
the contamination model satis1es SSEP, the set estimator C∗(X ) de1ned by (3.4) or
(3.5) is a con1dence set estimator at con1dence level 1 − �.

The second method, using WSEP, is to de1ne C(X ) to be a credible set estimator
for � at credibility level 1 − �. By (3.2), this requires that, for all x∈X,

P(C(x)|x) =

∫
C(x) Lx(�)Q(d�)∫

� Lx(�)Q(d�) + � sup{Lx(�): �∈C(x)c}¿ 1 − �: (3.6)

If Q is a continuous distribution and C(x) is required to satisfy (3.6), then the ‘size’
of C(x), measured by Q(C(x)), is minimized when C(x) is a likelihood set, 6 i.e.,
C(x) = {�∈�: Lx(�)¿!}, where the threshold ! can be determined by solving
P(C(x)|x) = 1 − � numerically. It was shown in the proof of Theorem 2.1 that ev-
ery credible set at level 1 − � must contain C∗(x), and usually strict containment is
needed.

4. Examples

4.1. Bernoulli trials (Walley, 1996, Section 4)

Suppose that a sequence of marbles is drawn from a bag with replacement, and
we observe 1ve non-red marbles followed by one red. Let � be the unknown chance

6 To prove that, let q be the minimized value of Q(C(x)). Subject to Q(C(x)) = q, the numerator of (3.6)
is maximized and the denominator is minimized when C(x) is a likelihood set.
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of drawing a red marble. The observed likelihood function is Lx(�) = �(1 − �)5. Let
Q be the uniform probability distribution on �= (0; 1); so

∫
� Lx(�)Q(d�) =∫

� �(1 − �)5 d�= 1
42 :

First, consider testing the hypothesis H0: �¿ 1
2 versus H1: �¡ 1

2 . Let A= {�∈�:
�¿ 1

2}. Using �= 10
19 , which corresponds to �0 = 0:1, in (3.1), the posterior upper

probability is P(A|x) = 0:458. This value is small enough to lead us to accept an
even-money bet against H0, but it indicates only very weak evidence against H0. The
posterior lower probability, given by (3.2), is P(A|x) = 0:015, which indicates that there
is no evidence in favor of H0.

These inferences are more cautious than standard frequentist or Bayesian inferences.
Frequentist inferences depend on the stopping rule for the experiment, which has not
been speci1ed. Assuming that it was decided in advance to draw six marbles (binomial
sampling), the standard frequentist p-value for testing H0 is 7

64 = 0:109, the chance
(when �= 1

2 ) of obtaining no more than one red marble in six drawings. A p-value
greater than 0:1 is interpreted as no more than weak evidence against H0. But if we
assume that the experiment was designed to continue until the 1rst red marble was
drawn (negative binomial sampling) then the p-value is 1

32 = 0:031, the chance (when
�= 1

2 ) that it will take at least six drawings to obtain the 1rst red marble. This would
be interpreted as moderately strong evidence against H0. Bayesian methods using the
standard ‘noninformative’ priors would conclude that there is strong evidence against
H0: the posterior probability of A is 1

16 using the uniform prior for � or 1
32 using

Haldane’s improper prior.
According to the contamination model, H0 is quite consistent with observing one red

marble in six drawings. Suppose that we make n drawings from the bag and obtain only
one red marble. How large must n be for the data to be inconsistent with H0? Using
the �-contamination model with �= 10

19 , we 1nd that P(A|x) is 0.112 when n= 10, and
0.042 when n= 12. So there is quite strong evidence against H0 when n= 10, leading
us to bet at odds of about 8 to 1 against H0, and very strong evidence against H0

when n= 12. Nevertheless, these inferences still appear to be very cautious.
Now consider set estimation of �. By (3.5), the likelihood interval derived from the

�-contamination model is C∗(x) = {�∈�: Lx(�)¿�=42}, which is a con1dence interval
for � at con1dence level 1−�. This gives C∗(x) = (0:0012; 0:722) as a 95% con1dence
interval and C∗(x) = (0:0024; 0:677) as a 90% con1dence interval for �.

These can be compared with standard frequentist and Bayesian intervals. The method
of Clopper and Pearson (1934), based on the assumption of binomial sampling, gives
(0:0042; 0:641) as a conservative 95% con1dence interval for �. Bayesian 95% high-
est posterior density credible intervals are considerably shorter. For example, the uni-
form prior distribution for � gives (0:013; 0:527) and Haldane’s improper prior gives
(0; 0:451) as 95% credible intervals for �.

As the sample size n becomes large, the width of the likelihood con1dence intervals
C∗(x) tends to zero, but at a slightly slower rate than the standard binomial con1dence
intervals. Writing rn for the observed relative frequency of successes in a sample
of n, a large-sample approximation to the standard binomial con1dence interval is
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(rn− z�=2%n; rn + z�=2%n), where %n = n−1=2[rn(1− rn)]1=2 and z�=2 is the upper quantile of
a standard normal distribution. A comparable large-sample approximation to C∗(x) is
obtained by replacing z�=2 by {−log(2&�2rn[1 − rn]n−1)}1=2. The asymptotic behavior
of the intervals C∗(x) is therefore slightly diEerent from the behavior of the standard
frequentist, Bayesian and likelihood intervals, which agree asymptotically. The ratio of
the length of C∗(x) to the length of the standard interval increases very slowly with
n. Taking �= 0:05 and rn = 0:3, for example, this ratio is 1.8 when n= 103, 2:2 when
n= 106, and 2:7 when n= 1010. Since both intervals are short when n is very large,
the diEerence in asymptotic behavior appears to have no practical importance.

4.2. Clinical data (Begg, 1990)

In a clinical trial discussed in Begg (1990), an adaptive randomized design (a type of
‘play the winner’ rule) was used to allocate patients to treatments. The design produced
a highly unbalanced allocation: 11 patients were given the experimental treatment,
all outcomes being successful, and only one patient received the control treatment,
which was a failure. Let �c and �e denote the chances of success under the control
and experimental treatments, respectively, with �= (0; 1)2. The likelihood function is
proportional to Lx(�c; �e) = (1 − �c)�11

e . Here the proportionality constant depends on
the particular design that was used to allocate patients to treatments but, according to
LP, the design can be ignored in making inferences about the parameters.

The aim of the trial was to test whether the experimental treatment had a higher
chance of success than the control. We therefore wish to test H0: �c¿ �e versus
H1: �c¡�e. Let A= {(�c; �e)∈�: �c¿ �e}, and let Q be the joint uniform probability
distribution for (�c; �e). By double integration of the likelihood function,

∫ ∫
� Lx(�c; �e)

d�c d�e = 1
24 and

∫ ∫
A Lx(�c; �e) d�c d�e = 1

2184 . Also sup{Lx(�c; �e): �c¿ �e}=
max{(1 − �)� 11: 06 �6 1}= 1111=1212 = 0:032, achieved by �c = �e = 11=12. Using
the �-contamination model with �= 10=19, (3.1) gives the posterior upper probability
P(A|x) = 0:466. The conclusion is that, although there is suAcient evidence to support
a bet against H0 at even money, there is not strong evidence against H0. The pos-
terior lower probability of H0, found from (3.2), is P(A|x) = 0:00040, an extremely
small value which shows that (not surprisingly) the data provide no evidence in favor
of H0.

In Begg (1990) and the ensuing discussion, a variety of p-values, from 0.00049
to 0.62, were suggested, based on diEerent test statistics and conditioning variables.
Most of these p-values were computed by conditioning on the observed sequence
of responses. For example, a standard randomization test de1nes the p-value to be
the probability of the observed sequence of treatment allocations conditional on the
observed sequence of responses, which is found to be 1=22 = 0:045, apparently indi-
cating moderately strong evidence against H0. [See the comments of Cox and Royall
in the discussion of Begg (1990).] However, Begg shows that if we also condition on
the total numbers of patients that were allocated to each treatment then the p-value
rises to 0.62, which indicates no evidence at all against H0. It is not clear in this
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example which of the frequentist tests is most appropriate, and since they lead to dif-
ferent conclusions it is unclear how a frequentist should assess the strength of evidence
against H0.

A Bayesian analysis based on a uniform prior distribution for (�c; �e) gives pos-
terior probability P(A|x) = 24=2184 = 1=91 = 0:011, which indicates extremely strong
evidence against H0. This conclusion seems unreasonable. Although the data provide
some evidence against H0, the evidence is not conclusive because only one patient
received the control treatment.

4.3. Generalized likelihood ratio

To get some further insight into the properties of consistency functions, consider a
very simple example of a sampling model, P∗

� , which can generate a likelihood function
proportional to Lx, where Lx is any bounded likelihood function on a parameter space
�. De1ne P∗

� on X= {x; x′} by

P∗
� (x) =Lx(�)=sup{Lx( ):  ∈�}; P∗

� (x′) = 1 − P∗
� (x); for all �∈�:

(4.1)

Since sup{P∗
� (x): �∈�}= 1, P∗

� maximizes P�(x) amongst all sampling models that
generate a likelihood function (given x) proportional to Lx.

Consider the problem of testing a general hypothesis HA: �∈A, where A∈A(�).
Given any consistency function �(·|x) that satis1es HTP, we can use �(A|x) as a
test statistic for testing HA. Assuming that x is observed, the p-value of the test is
sup{P∗

� [�(A|X )6 �(A|x)]: �∈A}. Using the trivial inequality P∗
� [�(A|X )6 �(A|x)]¿

P∗
� (x), the p-value of the test is at least

sup{P∗
� (x): �∈A}=

sup{Lx(�): �∈A}
sup{Lx(�): �∈�} : (4.2)

The right-hand side of (4.2) de1nes the generalized likelihood ratio statistic for testing
HA, which will be denoted by '(A|x).

Now consider a general sampling model. If a consistency function �(·|x) satis1es
both LP and HTP, and �(A|x)6 �0, then �(A|x)¿ '(A|x). In this case the degree of
consistency �(A|x) is an upper bound for the generalized likelihood ratio '(A|x). This
follows from the facts that (a) using LP, �(A|x) must agree with the value it assumes
under the sampling model P∗

� de1ned in (4.1); (b) using HTP, �(A|x) is at least as
large as the p-value of the above test of HA (see Section 2.4); and (c) by the above
argument, the p-value under P∗

� is at least '(A|x).
In Example 4:1, after observing one success in six trials we 1nd that '(A|x) = 0:233.

This would be interpreted as only weak evidence against HA, which agrees with the
interpretation of P(A|x) = 0:458 in Example 4:1. In Example 4:2 there is a bigger
discrepancy between '(A|x) and P(A|x). There '(A|x) = 0:032, which is much smaller
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than the upper probability P(A|x) = 0:466 and would be interpreted as strong evidence
against HA. The Birnbaum–Cox–Hinkley example (Example 1.1) shows that using the
generalized likelihood ratio statistic as a measure of strength of evidence can violate
the frequentist principles and lead to unreasonable conclusions.

4.4. Normal location

Suppose that n independent observations x1; x2; : : : ; xn are obtained from a normal dis-
tribution with known variance 2 and unknown mean (. Here x = (x1; x2; : : : ; xn), �= (,
and �=R. The likelihood function is proportional to Lx(() = exp[− 1

2n
−2((− Tx)2],

where Tx is the sample mean.
Because � is unbounded, there is no uniform or ‘noninformative’ probability dis-

tribution Q. To simplify the analysis, I take Q to be a normal distribution with mean
! and variance *2. Writing += ( Tx − !)=* and !2

n = 2=n*2 gives
∫∞
−∞ Lx(()Q(d() =

(1 + !−2
n )−1=2 exp[ − 1

2+
2=(1 + !2

n)].
The likelihood con1dence interval for ( at level 1 − � is

C∗(x) =
{
(∈R: Lx(()¿�

∫ ∞

−∞
Lx(()Q(d()

}

= ( Tx − n−1=2,; Tx + n−1=2,); (4.3)

where

,2 =
+2

1 + !2
n

+ log(1 + !−2
n ) − 2 log �: (4.4)

We can see from (4.4) that C∗(x) may be considerably wider than the standard
con1dence intervals. Since the 1rst two terms in (4.4) are nonnegative, we always
have ,2¿ − 2 log �. (This lower bound for ,2 is the limit of (4.4) as * → 0 with
!= Tx.) When �= 0:05, for example, the lower bound for , is (−2 log �)1=2 = 2:45,
whereas the corresponding value for the standard 95% con1dence interval is 1.96. This
means that the 95% likelihood con1dence intervals are always at least 1.25 times as
wide as the standard 95% con1dence intervals, and they can be much wider when |+|
is large or !n is small. For example, the moderate values �= 0:05; *2=2 = 2; n= 10
and += 2 give ,= 3:58. One reason that the intervals C∗(x) are so wide is that they
are valid con1dence intervals under all stopping rules that could have generated Lx,
whereas the standard intervals are based on the assumption that the sample size n is
1xed.

As the sample size n → ∞ with the other parameters (2; *2; +; �) 1xed, the width
of C∗(x) tends to zero at a slightly slower rate than the standard intervals, at rate
(log n)1=2n−1=2 rather than n−1=2, as in the Bernoulli Example 4:1. In fact (4.4) implies
that, as n → ∞,

,2 = log n + +2 + log(*2=2) − 2 log � + O(n−1): (4.5)
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5. Normalized-likelihood inferences

In this section I outline another method of inference that satis1es both the likelihood
and frequentist principles. It produces similar inferences to the contamination model
(Section 3), but it is more in the spirit of likelihood inference (Barnard, 1967; Edwards,
1972).

Again let Q be any probability measure on A(�). De1ne the consistency function
�(·|x) on � to be a normalized version of the likelihood function Lx,

�(�|x) =
Lx(�)∫

� Lx( )Q(d )
: (5.1)

The normalizing constant
∫
� Lx( )Q(d ) =

∫
� f (x)Q(d ) is the marginal probability

density (with respect to �) at x under probability measure Q.
It is proved below (in Theorem 5.1) that function (5.1) satis1es FFP with �0 = 1. By

Theorems 2.1 and 2.2, to satisfy the other frequentist principles of Section 2, we merely
need to de1ne �(A|x) in such a way as to satisfy the monotonicity condition (2.1).
To obtain the strongest possible inferences which satisfy the frequentist principles,
we need to choose the smallest consistency function �(·|x) that agrees with (5.1) on
the singleton sets and satis1es (2.1). This function is de1ned, for all A∈A(�) and
x∈X, by

�(A|x) = sup{�(�|x): �∈A}=
sup{Lx(�): �∈A}∫

� Lx( )Q(d )
: (5.2)

5.1. Frequentist properties

Theorem 5.1. The consistency function �(·|x); de5ned in (5:2); satis5es LP and the
5ve frequentist principles of Section 2 (FFP, HTP, WSEP, SSEP and CFP) with
�0 = 1.

Proof. LP holds because (5.2) depends on {P�: �∈�} only through Lx and is un-
changed when Lx is multiplied by a positive constant. To verify FFP, let �∈�;
06 �6 1, and B(�) = {x∈X: �(�|x)6 �}. Then, using (5.1) and using Fubini’s
theorem to change the order of integration,

P�[�(�|X )6 �] =
∫
B(�)

f�(x)�(dx)6
∫
B(�)

�
∫
�

f (x)Q(d )�(dx)

6 �
∫
X

∫
�

f (x)Q(d )�(dx) = �
∫
�

∫
X

f (x)�(dx)Q(d ) = �:

Thus FFP holds with �0 = 1. Since (5.2) satis1es the monotonicity condition (2.1),
it follows from Theorems 2.1 and 2.2 that HTP, WSEP, SSEP and CFP hold with
�0 = 1.

Instead of using �(A|x) to measure the degree of consistency, we could truncate the
values at 1 and use the upper probability measure P

∗
(A|x) = min{�(A|x); 1}. Since the
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frequentist principles refer only to degrees of consistency smaller than one, P
∗
(·|x)

satis1es the frequentist principles in the same way as �(·|x). The function P
∗
(·|x)

is coherent, in the sense of Walley (1991), when regarded as an upper probability
function for a 1xed x. This property is much weaker than the coherence property of the
contamination model, that the whole collection of upper probabilities {P(·|x): x∈X}
and {P�: �∈�} is coherent.

5.2. Hypothesis testing and set estimation

A general hypothesis HA: �∈A can be tested by calculating �(A|x) from (5.2) and
interpreting it as a measure of the consistency of HA with x. The data are inconsistent
with HA when �(A|x) is substantially smaller than 1. Since HTP is satis1ed, �(A|x)
is an upper bound for the p-value of a particular test of HA, and an upper bound for
the generalized likelihood ratio (Sections 2.4 and 4.3). From (5.2), �(A|x) is also an
upper bound for the Bayesian posterior probability Q(A|x) that results from the prior
distribution Q.

Also �(A|x) is closely related to the posterior upper probability produced by the
�-contamination model, which by (3.1) can be written as

P(A|x) =
Q(A|x) + ��(A|x)

1 + ��(A|x)
: (5.3)

It follows from (5.3) that �(A|x)¡P(A|x) whenever 0¡P(A|x)¡�0 and �¿ (2−�0)−1.
In that case �(A|x) produces slightly more informative inferences than P(A|x).

Two methods of de1ning a set estimator were discussed in Section 2.5. These
methods are diEerent in general, but for the particular consistency function (5.2)
they are essentially the same. A set estimator C(X ) for � is a credible set esti-
mator at credibility level 1 − � when �(C(x)c|x)6 � for all x∈X. Using (5.2),
this condition is equivalent to: �(�|x)6 � for all �∈C(x)c and x∈X. Hence the
smallest credible set for � at credibility level 1 − � is the likelihood con1dence set
C∗(x) = {�∈�: �(�|x)¿�}= {�∈�: Lx(�)¿�

∫
� Lx( )Q(d )}, which agrees with

the con1dence set (3.5) produced by the contamination model.

5.3. Examples

Inferences in the examples of Section 4 are essentially the same for the normalized-
likelihood model as for the contamination model. Consider Example 4:1, where one
success is observed in six Bernoulli trials. Again let Q be the uniform distribu-
tion on �= (0; 1), with

∫
� Lx(�)Q(d�) = 1=42: By (5.1), the consistency function

is �(�|x) = 42�(1 − �)5. To test HA: �∈A, where A= [ 1
2 ; 1), we calculate �(A|x) =

sup{�(�|x): �¿ 1
2}= 42( 1

2 )6 = 21=32 = 0:656, which indicates little evidence against
HA. If instead we observed one success in 10 Bernoulli trials, we would obtain
�(A|x) = 0:107. The shortest credible interval with credibility 1−� is C∗(x), the interval
given in Example 4:1.
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For the clinical data in Example 4:2, H0 has degree of consistency �(A|x) =
sup{Lx(�c; �e): �c¿ �e}=

∫ ∫
� Lx(�c; �e) d�c d�e = 0:0320×24 = 0:768, indicating that H0

is consistent with the data.

5.4. Finite parameter spaces

Suppose that � has 1nite cardinality r. In that case, as with the contamination model,
the consistency function (5.2) can be sharpened. Let Q be the uniform probability
distribution on �. Then (5.1) gives �(�|x) =Lx(�)=[r−1 ∑

 ∈� Lx( )]. De1ne a sharper
consistency function by

�′(�|x) =
Lx(�)

(r − 1)−1
∑

 �=� Lx( )
(5.4)

and extend it to subsets of � by �′(A|x) = sup{�′(�|x): �∈A}. This consistency func-
tion satis1es LP, and the frequentist principles can be veri1ed by modifying the proof
of Theorem 5.1. Also �′(�|x)¡�(�|x) whenever 0¡�(�|x)¡1, so the new function
does produce sharper inferences in the cases of interest. Because the denominator in
(5.4) depends on �, �′(·|x) is not a normalized version of the likelihood function.

In the case �= {�;  }, we obtain �′(�|x) =Lx(�)=Lx( ), the observed likelihood
ratio. It is well known that the likelihood ratio has good frequentist properties in the
case r = 2 (e.g., see Birnbaum, 1969, p. 129).

6. More powerful inferences from Bernoulli data

The examples in Sections 4 and 5 show that the methods considered there produce
cautious inferences: degrees of consistency tend to be large and credible intervals tend
to be wide. To satisfy both LP and FFP, inferences need to be suAciently conservative
to allow for all conceivable ways of embedding the observed likelihood function in a
complete sampling model. From a frequentist point of view, the methods have relatively
low power. Frequentist theories generally include some requirement that not only should
statistical procedures satisfy frequentist principles like those in Section 2, but also they
should be as powerful as possible. Maximizing power is emphasized especially in the
Neyman–Pearson theory.

To obtain more powerful and less conservative inferences, it appears that we must
give up strict adherence to either LP or FFP. The approach that I favor is to retain LP
and to look for methods with good frequentist properties, albeit weaker than FFP, and
reasonably good power. I will give one example of this approach, concerning Bernoulli
data.

6.1. Imprecise beta model

Suppose that the statistical data are the outcomes of a sequence of Bernoulli trials,
the parameter � is the chance of success in a single trial, and �= (0; 1). Let Xn
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and Yn, respectively, denote the number of successes and failures in the 1rst n trials,
Xn + Yn = n. Suppose that the experiment is stopped as soon as (Xn; Yn) reaches some
set S. Say that the stopping rule for the experiment is monotone when S satis1es the
condition: if (u; v)∈S; u6 x and v6y then (x; y)∈S. The most common stopping
rules, including the binomial and negative binomial, are monotone. An example of a
stopping rule that is not monotone is ‘stop as soon as |Xn − Yn|¿ k’, where k is a
positive integer, since (k; 0)∈S but (k; k) �∈ S.

It was suggested by Bernard (1996) and Walley (1996) that a particular imprecise
probability model, the imprecise beta model (IBM) with hyperparameter 1, should be
used to make inferences from Bernoulli data; see also Walley (1991, Section 5.3). The
prior IBM is the following set of beta probability density functions for �:

{&t : 0¡t¡1}; where &t is beta(t; 1 − t); &t(�) ∝ � t−1(1 − �)−t : (6.1)

I want to show here that inferences from the IBM have good frequentist properties
under all monotone stopping rules. Suppose that the degree of consistency �(A|x) is
identi1ed with P(A|x), the posterior upper probability from the IBM. Since P({�}|x) = 0
(beta distributions are absolutely continuous), inferences from the IBM do not satisfy
FFP and SSEP, and nor do they satisfy HTP and WSEP in complete generality. But
assuming that the stopping rule is monotone, the following results show that inferences
do satisfy HTP for one-sided tests, and WSEP for one-sided and equitailed two-sided
credible intervals. These results cover the most common types of inference.

6.2. Hypothesis testing

First, consider testing a one-sided hypothesis H0: �6 �0 against H1: �¿�0. Under
the IBM, the posterior upper probability of H0, after observing x successes and y
failures, is given by the formulae

P(H0|x; y) =P[beta(x; y + 1)6 �0] =P[binomial(x + y; �0)¿ x]; (6.2)

using a basic relationship between the binomial and beta distributions. It follows from
the last formula that P(H0|x; y) is equal to the p-value for testing H0, assuming that
the stopping rule is binomial (‘stop after x + y trials’). The next theorem shows that
P(H0|x; y) is an upper bound for the p-value, assuming only that the stopping rule is
monotone. Its proof relies on the following property of monotone stopping rules.

Lemma 6.1. Let B denote the boundary of S; i.e.; the set of all points in S which
can be reached from outside S by making one extra observation. Suppose that the
stopping rule is monotone and (x; y)∈B. Consider a sequence of Bernoulli trials with
‘stopping point’ (u; v)∈B. Imagine that the sequence is continued until at least x+y
observations have been made (continuing past the ‘stopping point’, if necessary); and
suppose that the 5rst x + y observations produce fewer than x successes. Then u6 x
and v¿y.
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Proof. Suppose that u¿x. Then the stopping point has not been reached after x + y
observations, in which there are more than y failures, hence v¿y. Since (x; y)∈S,
monotonicity implies (u− 1; v)∈S and (u; v− 1)∈S. But the sequence (Xn; Yn) must
pass through either (u−1; v) or (u; v−1) to reach (u; v), so the sequence must stop be-
fore reaching (u; v), which contradicts the assumption (u; v)∈B. Thus u6 x. Similarly,
if v¡y then we must stop before observation x+y, and u¡x. Hence (u; v)∈S implies
(x−1; y)∈S and (x; y−1)∈S by monotonicity, and so (x; y) �∈ B, contradicting the
assumption.

Theorem 6.1. Let T be a test statistic for testing H0: �6 �0 against H1: �¿�0;
where T (u; v) measures the strength of evidence against H0 provided by observa-
tions (u; v) and satis5es the weak condition: if u6w; v¿ z and (u; v) �= (w; z) then
T (u; v)¡T (w; z). If (x; y) are the observed numbers of successes and failures, the
p-value for testing H0 is de5ned to be sup{P�[T (X; Y )¿T (x; y)]: �6 �0}. Then; for
every monotone stopping rule; the p-value is no greater than P(H0|x; y). Here the
bound P(H0|x; y) is the sharpest possible; since it is achieved when the stopping rule
is binomial.

Proof. Let (x; y)∈B denote the data obtained in the experiment. Consider a random
realization of the experiment and let (u; v)∈B be its stopping point. By Lemma 6.1,
if the 1rst x + y observations produce fewer than x successes then u6 x, v¿y and
(u; v) �= (x; y), and so T (u; v)¡T (x; y) by the assumption about T . Thus T (u; v)¿
T (x; y) implies that the 1rst x+y observations produce at least x successes. Hence the
p-value is

p = sup{P�[T (X; Y )¿T (x; y)]: �6 �0}
6 sup{P�[at least x successes in the 1rst x + y trials]: �6 �0}
= sup{P[binomial(x + y; �)¿ x]: �6 �0}
= P[binomial(x + y; �0)¿ x] =P(H0|x; y):

6.3. Interval estimation

A similar result holds for one-sided credible intervals. At credibility level 1 − �,
the IBM produces the one-sided credible interval for �: C1(x; y) = (0; � ∗(x; y)), where
� ∗(x; y) =F−1

a (1 − �), Fa is the beta (x + 1; y) cumulative distribution function, and
� ∗(x; 0) = 1. This interval C1(x; y) agrees with the frequentist one-sided con1dence
interval at con1dence level 1 − �, based on the assumption of binomial sampling.
The following theorem shows that the one-sided credible interval is a valid con1-
dence interval under any monotone stopping rule. The proof is similar to the proof of
Theorem 6.1.
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Theorem 6.2. For every monotone stopping rule; the one-sided credible interval esti-
mator C1(X; Y ) is a con5dence interval estimator for � at con5dence level 1− �; i.e.;
P�[�∈C1(X; Y )]¿ 1 − � for all �∈�.

At level 1− �, the equitailed two-sided credible interval for � produced by the IBM
is C2(x; y) = (�∗(x; y); � ∗(x; y)) with � ∗(x; y) =F−1

a (1−�=2) and �∗(x; y) =F−1
b (�=2),

where Fa and Fb are the beta (x + 1; y) and beta (x; y + 1) cumulative distribution
functions, � ∗(x; 0) = 1 and �∗(0; y) = 0. It follows from Theorem 6.2 that, for any
monotone stopping rule, C2(X; Y ) is a con1dence interval estimator for � at con1dence
level 1 − �. In fact, the credible intervals C2(x; y) agree with the widely used con1-
dence intervals of Clopper and Pearson (1934) for a binomial parameter. The binomial
stopping rule is least favorable amongst the monotone stopping rules in the sense that
it minimizes P�[�∈C2(X; Y )].

6.4. Examples

To see that the IBM produces more powerful inferences than the contamination and
normalized-likelihood models, consider the Bernoulli Example 4:1. The IBM produces
an equitailed two-sided 95% credible interval for � which agrees with the Clopper–
Pearson interval (0:0042; 0:641). It is somewhat shorter than the 95% likelihood con1-
dence interval (0:0012; 0:722).

In the problem of testing H0: �¿ 1
2 versus H1: �¡ 1

2 , the IBM gives P(H0|x; y) =
7=64 = 0:109, equal to the p-value assuming binomial sampling, which is much smaller
than the values 0:458 and 0:656 from the contamination and normalized-likelihood
models. A clearer illustration of the improvement in power is obtained in the case
where we observe one success in 10 trials: then the IBM gives P(H0|x; y) = 0:011,
whereas the values given by the two earlier models are 0:112 and 0:107.

The good frequentist properties of the IBM extend to contingency tables and pre-
dictive inferences. Suppose that data are obtained from two populations in the form of
a 2×2 contingency table. Let �1 and �2 be the chances of success in each population,
and apply the IBM to �1 and �2 independently. Then the posterior upper probabil-
ity of H0: �1¿ �2 agrees with the one-sided p-value from Fisher’s exact test (Walley,
1996). In Example 4:2, for instance, P(H0|x) = 1=12 = 0:083. This is much smaller than
the values 0:466, obtained from the contamination model in Example 4:2, and 0.768,
obtained from the normalized-likelihood model in Example 5:3.

The one-sided and equitailed two-sided prediction sets produced by the IBM agree
with the frequentist prediction sets constructed from Fisher’s exact test (Thatcher,
1964). The same model applies to sampling without replacement from a 1nite pop-
ulation, where again the inferences from the IBM have good frequentist properties
(Walley and Bernard, 1999, Sections 5:5, 6:3). For other applications of the IBM and
its generalization to multinomial data, see Walley et al. (1996), Walley and Bernard
(1999), and the paper by Bernard (2002) in this volume.
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7. Conclusions

The main point of this paper is that basic frequentist principles, as formulated in
Section 2, are compatible with the likelihood principle and principles of coherence.
There are general methods of statistical inference which satisfy all these principles.
One is the contamination method de1ned in Section 3. The normalized-likelihood
method in Section 5 also satis1es the frequentist and likelihood principles, although
it is not fully coherent when degrees of consistency are interpreted as upper prob-
abilities. (For that reason, the contamination method seems preferable.) These two
methods can be used to test hypotheses and form set estimates for unknown pa-
rameters, and to make predictive inferences about future observations, in virtually
any problem of statistical inference where an observed likelihood function can be
de1ned. For extensions of these results to predictive inference, see Walley
(1998).

Inferences from the two methods are highly robust. For example, the contamina-
tion method produces 95% credible sets which are valid (conservative) frequentist
95% con1dence sets under all the sampling models which could have generated the
observed likelihood function, and which are also valid (conservative) Bayesian 95%
credible sets with respect to all the prior probability distributions in a very large set
(an �-contamination neighborhood, where �¿ 1

2 ). That is, the frequentist and Bayesian
coverage probabilities are valid across a wide range of stopping rules and prior distri-
butions. The methods do require precise knowledge of the observed likelihood function
Lx, but they can be generalized to achieve robustness with respect to the likeli-
hood function by replacing Lx by upper and lower likelihood functions, as in Walley
(1991).

It may be objected that, despite these attractive properties, the two methods are too
cautious to be useful in most practical problems of statistical inference. But their cau-
tiousness can be bene1cial, since it limits inferences to those that are agreed amongst
frequentist, likelihood, Bayesian and imprecise probability analyses, and which are
therefore highly robust and uncontroversial. The methods may also be useful in some
problems where the observed likelihood function is known but the full sampling model
is not, because inferences depend only on the likelihood function and satisfy the fre-
quentist properties irrespective of the sampling model. For example, if observations are
obtained sequentially but the stopping rule that was used to terminate the experiment
is complicated or unknown then it may be impossible to calculate an exact p-value
or con1dence set. In such cases the methods studied here can be used to make valid
frequentist inferences.

The imprecise beta model (IBM) is based on a much smaller set of prior distributions
than the contamination model, and it therefore produces more powerful inferences.
These inferences do not satisfy the general versions of the frequentist principles given in
Section 2, but they do satisfy restricted versions of the hypothesis testing and weak set
estimation principles, restricted to one-sided tests and one-sided or equitailed two-sided
intervals.



P. Walley / Journal of Statistical Planning and Inference 105 (2002) 35–65 63

How can the imprecise beta model be extended to other types of likelihood func-
tion? To suggest one possible extension, 1rst note that the basic frequentist properties
of the IBM are retained if the set of prior distributions (6.1) is replaced by a larger
set. To de1ne such a set, 1rst transform the Bernoulli parameter � to the log odds-ratio
 = log(�=[1 − �]), and then consider the set of all prior probability density functions
(f) for  that are everywhere continuous and positive and whose derivative f′ sat-
is1es |f′( )|6 cf( ) for almost all  . Such a set of prior distributions is called
a bounded derivative model (Walley, 1997). Provided that c¿ 1, it can be veri1ed
that the corresponding set of prior densities for � contains the IBM set (6.1) and it
therefore produces inferences which satisfy the frequentist properties in Theorems 6.1
and 6.2.

The bounded derivative model can be applied in other one-parameter problems by
choosing a positive number c and a suitable transformation,  , of the parameter. Again
degrees of consistency are identi1ed with posterior upper probabilities, and c is chosen
to be suAciently large to guarantee one-sided frequentist properties (i.e., one-sided ver-
sions of the hypothesis testing and weak set estimation principles). For example, the
bounded derivative model satis1es the one-sided frequentist properties, for the given
values of  and c, when the data are a random sample of 1xed size from the following
distributions: Bernoulli, binomial, geometric or negative binomial with success prob-
ability �, where  = log(�=[1 − �]); c¿ 1; Poisson with mean �;  = log(�); c¿ 1;
normal with mean � and known standard deviation (and other location parameters),
 = �; c¿0; normal with standard deviation � and known mean (and other scale pa-
rameters),  = log(�); c¿0.

The contamination, imprecise beta and bounded derivative models illustrate a general
approach to reconciling frequentist and likelihood principles that deserves careful inves-
tigation. The general approach is to identify degrees of consistency with the posterior
upper probabilities that are produced by a set of prior probability distributions, and to
1nd a set of prior distributions that is suAciently large to satisfy at least one-sided
versions of the frequentist principles, yet suAciently small to have reasonably good
power properties. Inferences from such a model are coherent and they satisfy the like-
lihood principle. By using imprecise probability models in this way, it appears that
good frequentist properties can be reconciled with the likelihood principle.
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