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This lecture

Multinomial model

Prediction of a categorical response

A few different approaches1

gBayes based on Walley’s Imprecise Dirichlet Model
Denoeux’s confidence-region-based belief function
my new prediction IM

...

1Not an exhaustive list, e.g., conformal prediction can be applied here too
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Multinomial model

Consider a set of K ≥ 2 categories

could be ordered (e.g., small, medium, large)
could be unordered (e.g., red, blue, green)

Let X denote a random variable on X = {1, 2, . . . ,K}
Distribution P of X determined by a probability vector

θk = P(X = k), k = 1, . . . ,K

All three are equivalent:

parameter space T for θ = (θ1, . . . , θK )
set of all probability distributions P for X
probability simplex in RK

3 / 17



Multinomial model, cont.

Let X n = (X1, . . . ,Xn) be iid copies of X

Likelihood function is

Ln(θ) ∝
K∏

k=1

θNk
k , Nk(X n) = |{i : Xi = k}|

This likelihood is “nonparametric” by above equivalence

For inference on θ (equivalently, on P):

maximum likelihood, θ̂k = Nk/n
Bayes, e.g., with Dirichlet prior (below)
...

Our goal here is predicting a new observation, Xn+1
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Dirichlet distribution

DirK (β): continuous distribution on the simplex T ⊂ RK

Density function,2 depending on β = (β1, . . . , βK ),

ϑ 7→ c(β)
K∏

k=1

ϑβk−1k , ϑ ∈ T

It’s the Bayesian conjugate prior for multinomial models3

if Θ ∼ DirK (β)

and (X n | Θ = θ)
iid∼ MultK (θ)

then (Θ | X n = xn) ∼ DirK (β + N(xn))
and the predictive distribution is

P(Xn+1 = k | xn) =
βk + Nk(xn)∑K
κ=1 βκ + Nκ(xn)

, k = 1, . . . ,K

2https://en.wikipedia.org/wiki/Dirichlet_distribution
3This is the basis for Ferguson’s Dirichlet process developments
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Walley’s imprecise Dirichlet model

The Bayesian analysis above depends on the choice of β

If information about β is available, then fine

If not, then what? A “default” choice?

Walley4 aimed to be more careful by allowing the Dirichlet
prior to be imprecise, i.e., a set of Dirichlet priors

Reparametrization of the Dirichlet model:

mean vector t = (t1, . . . , tK ) ∈ T and precision s > 0
then βk = stk , for k = 1, . . . ,K

Walley proposed a prior credal set

C (s) = {DirK (s, t) : t ∈ T}

Almost vacuous...

4Walley (JRSS-B 1996), “Learning about a bag of marbles”
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IDM, cont.

By the conjugacy result above, the posterior credal set is

C (xn; s) = {DirK (s + n, tn) : tnk = stk+Nk (x
n)

s+n , t ∈ T}

This is a set of posterior distributions for Θ, so gBayes
inference on Θ calculates lower/upper envelopes

Our goal is prediction of Xn+1, and the above credal set for a
collection of predictive distributions indexed by (s, xn)

Read off the lower/upper prediction probabilities:

Πxn,s(A) =

∑
k∈ANk(xn)

s + n

Πxn,s(A) =
s +

∑
k∈ANk(xn)

s + n
, A ⊆ X
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IDM, cont.

Imprecision is controlled by the precision s

large s means wider spacing between Πxn,s and Πxn,s

small s means narrower spacing
can interpret s as a “learning rate”

Properties:

super-simple to implement
it’s generalized Bayes, so entirely coherent
output is a belief function in this case5

both Πxn,s and Πxn,s converge to true P as n→∞
...

Walley considered the multinomial model specifically, but
these ideas extend to other exponential families6

5m({k}) = Nk/(n + s), for k = 1, . . . ,K , and m(X) = s/(n + s)
6e.g., Quaeghebeur & de Cooman (ISIPTA 2005)
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Denoeux’s belief function

Thierry Denoeux is a leader in the belief function community,
fundamental work on stat inference & ML

A really nice paper7 of his is on the construction of a belief
function for predicting Xn+1 ∼ MultK (·)
Background:

I showed you Dempster’s framework for K = 2 (binomial)
a belief function for prediction follows readily
computationally challenging for K ≥ 3...8

very recent work9 helps to overcome this challenge

Denoeux’s paper gives a relatively simple alternative to
Dempster’s approach for general K

7Denoeux (IJAR 2006)
8Dempster (Ann Math Stat 1966)
9Jacob et al (JASA 2021)
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Denoeux’s belief function, cont.

Goal: a belief function ΠX n on X for predicting/quantifying
uncertainty about the next observation Xn+1

Lots of options, need some properties we want ΠX n to satisfy

Denoeux’s two requirements:

R1 ΠX n(A)→ P(A) in P-probability, all A ⊆ X, as n→∞
R2 For a given α ∈ (0, 1),

P{ΠX n(A) ≤ P(A) for all A} ≥ 1− α

Both are reasonable

Superficially at least, R2 looks similar to validity, but it’s
actually very different; more later

How to find ΠX n that satisfies R1 and R2?
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Denoeux’s belief function, cont.

Recall:

the multinomial parameter θ = (θ1, . . . , θK )
equivalance between θ and P

A 100(1− α)% confidence region Cα(X n) for θ satisfies

P{Cα(X n) 3 θ} ≥ 1− α

For Cα(X n), Denoeux recommends

Cα(X n) = [θ−1 , θ
+
1 ]× · · · × [θ−K , θ

+
K ]

where

θ±k =
a + 2Nk ±∆

1/2
k

2(n + a)

with a = qchisq(1− α, df = 1) and

∆k = a
{
a +

4Nk(n − Nk)

n

}
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Denoeux’s belief function, cont.

Each θ in Cα(X n) corresponds to a probability dist on X
Lower envelope defines a candidate solution

Πtmp
X n (A) = max

{∑
k∈A

θ−k , 1−
∑
k 6∈A

θ+k

}
, A ⊆ X

Properties:

easy to check R1, n−1Nk(X n)→ θk = P(X = k)
similarly for R2, i.e.,

P{Πtmp
X n lower-bounds P} = P{Cα(X n) 3 θ(P)} ≥ 1− α

note that ΠX n depends on α...

However, Πtmp
X n isn’t a belief function10 when K > 3

10But it is a 2-monotone capacity...
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Denoeux’s belief function, cont.

Denoeux wants the output to be a belief function, so he needs
to modify Πtmp

X n in a suitable way

Natural idea: inner approximation of Πtmp
X n by a belief function

This approximation is more complicated, requires optimization
via solving a linear program

Too messy to present here, but apparently easy to do

Denoeux shows that the output, ΠX n , of this optimization
routine is a belief function and satisfies R1 and R2
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Valid prediction IM

In discrete settings, nonparametric = parametric

Can do the IM stuff from before with multinomial model

If I take a vacuous prior, then

πxn(κ) = sup
θ

PX n,Xn+1|θ{η(X n,Xn+1) ≤ η(xn, κ)}

where

η(xn, κ) =
supθ θ

Nκ+1
κ

∏
k 6=κ θ

Nk
k

maxζ supθ θ
Nζ+1
ζ

∏
k 6=ζ θ

Nk
k

Looks messier than it really is...
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Illustration

Data from Denoeux’s Example 1: N(xn) = (91, 49, 37, 43)

Plot shows my mine and Denoeux’s (4) plausibility contour
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Discussion

Multinomial models are simple but represent an important
class of problems — these are “discrete nonparametric”

Walley’s IDM is simple and powerful11

Denoeux’s method is appealing:

very simple in the K ∈ {2, 3} cases
doable but more complicated in others
motivated by some performance-related criteria
...

Denoeux’s R2 is not the same as “validity”

I threw the IM solution together quickly and naively, would be
interesting to explore this further...

11Extensive literature on this covering pros and cons
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Next lecture

Prediction with covariates

regression
classification

Imprecise probabilistic methods

...
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