ST790 — Fall 2022 Imprecise-Probabilistic Foundations of Statistics

Ryan Martin North Carolina State University www4.stat.ncsu.edu/~rmartin

Week 12b

- Recap some of general ML details
- More classification (with imprecise probability)
- In particular:
 - Denoeux's evidential neural network classifier
 - conformal prediction and IMs

.....

Quick recap of ML

Ingredients:

- data, e.g., features X_i and labels Y_i
- class $\mathcal F$ of functions, hopefully $y \approx f^*(x)$ for some $f^* \in \mathcal F$
- loss function, ℓ_f , to rate quality of f
- Note the absence of a statistical model...
- Training step boils down to "estimating" f via empirical risk minimization,¹ i.e., $\hat{f}_n = \arg \min_{f \in \mathcal{F}} n^{-1} \sum_{i=1}^n \ell_f(X_i, Y_i)$

$$\hat{f}_n(x) = \arg \max_{y \in \mathbb{Y}} \underbrace{\widehat{P}(Y = y \mid X = x)}_{y \in \mathbb{Y}}$$

estimated predictive prob

• Use the trained \hat{f}_n to predict/classify new examples

¹Stochastic gradient descent is commonly used

Quick recap, cont.

- Huge *F* and fancy algorithms/technology won't eliminate uncertainty, so UQ will always be relevant
- Two dominant statistical schools of thought?
 - frequentist
 - \rightarrow estimation is relatively easy
 - \rightarrow UQ isn't at all automatic
 - \rightarrow if it can be done, then likely inefficient ("model agnostic")
 - Bayesian
 - \rightarrow difficult to do (if one's being "honest")
 - $\rightarrow~$ UQ is an immediate by-product
 - $\rightarrow\,$ meaningfulness of UQ wrt a single posterior dist?
- Imprecise-prob methods are a promising middle-ground...?

- Last time: naive credal classifier
- Extension/imprecise version of naive Bayes classifier
- Key features:
 - weaker prior assumptions (re: Manski)
 - able to classify examples to multiple labels
 - computationally tractable (thanks to IDM connection)
- **Today:** belief function/Dempster–Shafer approaches
 - evidential neural net classifier²
 - deep version, based on convolutional neural nets³

³Tong, Xu, and Denoeux (*Neurocomputing* 2021)

²Denoeux (*IEEE SMC* 2000)

Evidential classifier

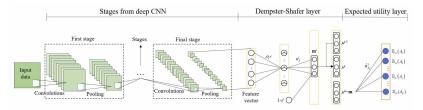
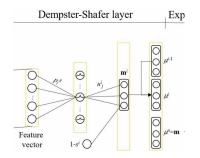


Figure 1: Architecture of an evidential deep-learning classifier.

- Multiple layers/stages:⁴
 - input gets processed through neural nets
 - neural net output gets converted into a mass/belief function
 - "expected utility" calculation for decision-making
- I'll focus exclusively here on the DS layer, which itself consists of several steps

⁴Screenshot from Tong, Xu, and Denoeux (2021)

Evidential classifier, cont.



- DS-layer consists of three steps:
 - distance-based support between input and references
 - mass function constructed for each reference
 - reference-specific mass functions combined via Dempster's rule
- Depends on parameters to-be-learned from training set

Details

Data consists of (X, Y) pairs

- Y's are labels
- X's represent images, chunks of text, etc
- Processing: $X \rightsquigarrow Z = Z(X) \in \mathbb{R}^q$
 - "↔" designed to extract important characteristics
 - depends on the form of the input
 - depends on lots of to-be-learned parameters
- For our purposes, it suffices to proceed as if (*Y*, *Z*) is the available data, ignoring the processing
- Focus on mapping Z to a belief/mass function for Y

Details, cont.

• Fix a set of *prototypes* p^1, \ldots, p^R in \mathbb{R}^q

Assign weight vectors α^r to each prototype:

- $\beta_y^r := p^r$'s degree of membership to class y
- with constraint $\sum_{v} \beta_{v}^{r} = 1$ for each r
- these are to-be-learned parameters

For a generic $z \in \mathbb{R}^q$, calculate the distance to prototypes

$$d^{r} = d^{r}(z) = ||z - p^{r}||, \quad r = 1, \dots, R$$

Factors influencing association between input z and label y

- distance of z from prototypes
- prototype membership degree with label y

Details, cont.

Given z, for each prototype $r = 1, \ldots, R$, define a random set with mass function $m^{r}(\cdot)$,

$$m^{r}(\{y\}) = \alpha^{r} \beta_{y}^{r} \exp\{-\gamma^{r} (d^{r})^{2}\}, \quad y \in \mathbb{Y}$$
$$m^{r}(\mathbb{Y}) = 1 - \alpha^{r} \exp\{-\gamma^{r} (d^{r})^{2}\}$$

• $\alpha^{r'}$'s, $\beta^{r'}$'s, and $\gamma^{r'}$'s are to-be-learned parameters

$$\sum_{y} m^{r}(\{y\}) + m^{r}(\mathbb{Y}) = 1$$

- Defines a belief/plausibility function on 𝔄
- This gives a prototype-specific quantification of uncertainty about which label y is associated with input z

- Goal is overall UQ, not a prototype-specific UQ
- Denoeux's idea:
 - since each prototype-specific UQ is a belief function
 - just combine m^1, \ldots, m^R via Dempster's rule
- In symbols, $m = \bigoplus_{r=1}^{R} m^{r}$, Shafer's orthogonal sum
- Detailed formulas are messy⁵ and, hence, omitted
- Given this (*z*-dependent) mass function *m*, there are some options for carrying out classification:
 - naive strategy, arg max_y $m(\{y\})$
 - belief function yields a Choquet integral, so we can classify based on optimizing lower/upper expected utility⁶

⁵Denoeux uses some recursive relations...

⁶I'll cover general decision-theory details later

- Process raw X through, say, a convolutional neural net
- Output Z and labels Y go into the DS-layer
- Returns a belief function on $\mathbb {Y}$ for classification
- Parameters to be tuned in both the initial processing and the DS-layer, can be handled simultaneously via SGD
- For a new example, the feature X_{n+1} gets mapped to Z_{n+1} and then to a belief function on 𝒱
- Classification rule can be tailored so that set-valued classifications are made, more conservative, less error-prone

- Roughly, Denoeux takes some existing machinery and uses the output to construct a belief function for UQ
- There are other ways to implement such a strategy
- Conformal prediction⁷ is a powerful method to leverage
- Recall:

■ set
$$Z_i = (X_i, Y_i)$$
 for $i = 1, ..., n$
■ set $Z_{n+1} = (x, y)$ for generic (x, y)
■ define a non-conformity score $M(B, z)$
■ compute $\mu_i = M(\{Z_1, ..., Z_{n+1}\} \setminus \{Z_i\}, Z_i), i = 1, ..., n+1$
■ return $\pi_n(y \mid x) = (n+1)^{-1} \sum_{i=1}^{n+1} 1\{\mu_i \ge \mu_{n+1}\}$
■ prediction region: $C_{\alpha}(Z^n; x) = \{y : \pi_n(y \mid x) > \alpha\}$

⁷Vovk et al's Algorithmic Learning in a Random World

Conformal prediction, cont.

- It turns out that conformal prediction can be related to (nested) random sets and belief functions⁸
- Conformal prediction's coverage reliability aligns with IM validity, so it's a special kind of belief function
- With finite Y, the random set can be empty with non-zero probability; implies π_n(y | x) < 1 for all y</p>
- This is bad coherence & validity fail
- Two remedies:
 - condition on random set $\neq \emptyset$ (Dempster-style)
 - appropriately "stretch" random set⁹
- Both preserve validity, but latter is more efficient!

⁸Cella & M. (*IJAR* 2022), arXiv:2112.10234

⁹M. and Liu, Inferential Models, Ch. 5

Conformal prediction, cont.

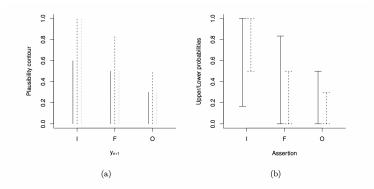


Figure 3: Panel (a): Plausibility contours in Equation (23), derived from an IM construction with no adjustment (solid lines), conditioning adjustment (dashed lines) and stretching adjustment (dotted lines). Panel (b): Upper and lower probabilities for the singleton assertions $\{I\}, \{F\}$ and $\{O\}$ derived from an IM construction with the conditioning adjustment (solid lines) and the stretching adjustment (dashed lines). These predictions are based on a new alligator of length $x_{n+1} = 2$ meters.

- I gave a high-level explanation of two imprecise-probabilitybased classification methods
 - evidential classifier: neural nets & Dempster–Shafer
 - IM classifier: conformal prediction & nested random sets
- Comparison:
 - conformal prediction can be used in conjunction with deep learning, but it's likely expensive¹⁰
 - evidential classifier (probably) doesn't have error rate controls

• Other methods...?

¹⁰ "Split" conformal prediction is faster, but validity is only approximate

- Prediction in regression
- i.e., supervised learning with continuous Y
- More IMs and conformal prediction
- Brand new stuff on *random fuzzy numbers*