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This lecture

Regression problems in ML

Imprecise-probabilistic approaches:

IMs and conformal prediction
Denoeux’s1 random fuzzy sets

...

1See, also, Cuoso & Sanchez (Fuzzy Sets & Systems 2011)
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Quick recap of ML

Ingredients:

data, e.g., features Xi and labels/responses Yi

class F of functions, hopefully y ≈ f ?(x) for some f ? ∈ F
loss function, `f , to rate quality of f

Note the absence of a statistical model...

Training step boils down to “estimating” f by minimizing an
empirical risk function, i.e.,

f̂n = arg min
f ∈F

1

n

n∑
i=1

`f (Xi ,Yi )

Might need penalty terms to manage complexity, numerical
methods (e.g., SGD) will probably be needed too

Use the trained f̂n to predict/classify new examples
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Regression case

Now focus on continuous responses Yi

Common choice of loss: `f (x , y) = {y − f (x)}2

Familiar case of linear model

F = {x 7→ β>x : β ∈ Rq}
then f̂n is the least-squares fitted mean response

“Linear models are too restrictive” — not true!

In fact, linear models are basically all we know:

F = {x 7→ β>B(m)(x) : β ∈ Rm} for fixed m
...
neural networks, etc., are basically (high-dim) linear models in
transformed x ’s

4 / 21



Regression case, cont.

Relationship between y and x could be complex:

x itself is high-dim
flexibility baked into F introduces high-dim parameter

In that case, the empirical risk minimization takes the form

f̂n = arg min
f ∈F

{1

n

n∑
i=1

`f (Xi ,Yi ) + λ pen(f )
}

New pieces:

pen(f ) is a penalty, larger when f is more complex
e.g., smooth functions are less complex, and sparse β typically
makes smoother fβ , so pen(fβ) = ‖β‖1 is reasonable
λ is weight to balance influence of penalty

Then the solution, f̂n, depends on (λ, pen)
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Uncertainty quantification

Given f̂n, we only know how to predict Yn+1

Again, no matter how fancy the model/algorithm, there’s no
guarantee that f̂n(Xn+1) exactly equals Yn+1

How to quantify uncertainty?

With simple models and/or strong assumptions, this is
relatively easy to do, solutions would more-or-less agree

More generally: this is challenging/non-trivial

Imprecise-probabilistic ideas:

Cella and M., arXiv:2112.10234
Denoeux, arXiv:2202.08081 and arXiv:2208.00647
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Conformal prediction and valid IMs

Conformal prediction algorithm...

The output πn(y | x) defines a x-dependent possibility
contour on Y, leads to a possible measure with

Πn(A | x) = sup
y∈A

πn(y | x), A ⊆ Y

An IM2 that achieves strong prediction validity, i.e.,

sup
exchangeable P

P{πn(Yn+1 | Xn+1) ≤ α} ≤ α, α ∈ [0, 1]

Doesn’t require “correctly specified models”3

Predictive probability distributions can’t be valid in this sense

2Connection between IMs and CP is made on the random set level; this
get-CP-first-then-interpret-as-an-IM is simpler to explain

3More efficient when fitted model is “right”—see, e.g., Slide 20 below
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Conformal prediction and valid IMs, cont.
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Random fuzzy numbers

New extension of DS theory & possibility theory

Basic road-map:

neural net provides a flexible relationship between Y and X
observations (Xi ,Yi ) allow for learning this relationship
quantify uncertainty about Yn+1, given Xn+1 and training
data, via a suitable random fuzzy number

Need some more background:

fuzzy numbers
random version thereof
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Fuzzy sets

Fuzzy deals with ambiguity (Zadeh 1960s)

Fuzzy logic generalizes Boolean true-or-false logic
e.g., “Sam is tall” isn’t universally true or false

Fuzzy sets generalize the notion of a (crisp) set

Fuzzy sets4 Ã in a space Y are determined by a membership
function, say, µÃ : Y→ [0, 1]

a fuzzy set is crisp if µÃ(y) ∈ {0, 1} for all y
membership function of a crisp set is its indicator function

Membership function assigns to each y ∈ Y a quantitative
degree of membership, µÃ(y) ∈ [0, 1], to the fuzzy set Ã

A fuzzy set is characterized by its membership function

4Customary to write A for an ordinary set and Ã for a fuzzy version
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Fuzzy sets, cont.

Ã = {cold temperatures when I lived in Chicago}
B̃ = {cold temperatures after I moved to NC}
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Fuzzy sets, cont.

Just like for crisp sets, there’s a fuzzy set arithmetic5

All amount to operations with membership functions

I’ll focus just on fuzzy set intersection6

For fuzzy sets Ã and B̃, the intersection Ã ∩ B̃ is defined by
the membership function

µÃ∩B̃(y) = µÃ(y) ? µB̃(y)

“?” is a t-norm,7, e.g., a ? b = ab or a ? b = a ∧ b

5e.g., see Hanss’s Applied Fuzzy Arithmetic
6a.k.a. “conjunctive combination”
7Triangular norm: https://en.wikipedia.org/wiki/T-norm
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Fuzzy sets, cont.

Ã = {cold temperatures when I lived in Chicago}
B̃ = {cold temperatures after I moved to NC}
Ã ∩ B̃, product t-norm
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Fuzzy sets, cont.

Close connection to possibility theory

The height of Ã is supy µÃ(y)

If height equals 1, then

Ã←→ possibility measure
former’s membership fn is the latter’s contour fn

Like Dempster’s rule combines of belief functions, the fuzzy
set intersection can combine possibility measures

That is, if π1 and π2 are possibility contours on Y, then these
can be combined to a new possibility contour8 as

π1?2(y) =
π1(y) ? π2(y)

supv{π1(v) ? π2(v)}
, y ∈ Y

8See Week 09b, Slide 14
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Random fuzzy sets

On a prob space (Ω, ·,P), define Ỹ : Ω→ [0, 1]Y s.t.

Ỹ (ω) is a fuzzy set in Y for each ω ∈ Ω

Defines a random fuzzy set

If height(Ỹ ) = 1 P-a.s., then there’s a random possibility meas

possỸ (A) := sup
y∈A

µỸ (y), A ⊆ Y

The UQ on Y provided by a random fuzzy number can be
described by the upper probability

Π(A) =

∫
possỸ (ω)(A) P(dω), A ⊆ Y

Corresponding lower probability, Π, is a belief function
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Random fuzzy sets, cont.

For one or more random fuzzy sets (RFSs), the evidence they
contain can be pooled using fuzzy set intersection

The rule is associative, so it suffices to explain for two RFSs

Roughly:

two indep pieces of evidence (Ωj , ·,Pj , Ỹj), j = 1, 2

(Ỹ1 ∩ Ỹ2)(ω1, ω2) has membership function

µ(Ỹ1∩Ỹ2)(ω1,ω2)
(y) ∝ µỸ1(ω1)

(y) ? µỸ2(ω2)
(y), y ∈ Y

final UQ obtained by averaging wrt P1 × P2

With n pieces of evidence/RFSs, final UQ on Y is

Π(A) =

∫
possỸ1∩···∩Ỹn

(A) d(P1 × · · ·Pn)
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Gaussian random fuzzy numbers

A Gaussian fuzzy number9 corresponds to a membership fn

µ(y) = exp{−h
2 (y −m)2}, y ∈ R

Parametrized by a mean m and precision h ≥ 0

Key property: Gaussian fuzzy numbers are closed under fuzzy
set intersection

A Gaussian random fuzzy number Ỹ is a Gaussian fuzzy
number with a mean M ∼ N(θ, σ2), i.e.,

µỸ (ω)(y) = exp[−h
2{y −M(ω)}2], y ∈ R, ω ∈ Ω

Notation: Ỹ ∼ Ñ(θ, σ2, h)

9A “fuzzy number” is just a fuzzy interval
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Evidential neural net regression

Prototypes w1, . . . ,wJ in Rq

For a generic x ∈ Rq and for prototype j = 1, . . . , J:

activation of prototype j , aj(x) = exp{−γ2j ‖x − wj‖2}
mean function µj(x) = αj + β>

j x

GRFN Ỹj(x) ∼ Ñ(µj(x), σ2
j , aj(x)hj)

Take fuzzy set intersection of the j-specific GRFNs...

Gives Ỹ (x) ∼ Ñ
(
µ(x), σ2(x), h(x)

)
, with, e.g.,

µ(x) =

∑J
j=1 aj(x) hj µj(x)∑J

j=1 aj(x) hj

Parameters (wj , γj , βj , αj , σ
2
j , hj) learned from training data
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ENNreg, cont.

Left: from Sec 4.1 of Denoeux’s BELIEF’22 paper

Right: conformal prediction IM on a “similar” data set
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Concluding remarks

Today: regression & imprecise-probabilistic methods

Conformal prediction is powerful, but has limitations:

computationally expensive
exchangeability isn’t always an appropriate assumption10

marginally but not conditionally valid
efficiency gains by replacing “sup P” with a general “P”?

Random fuzzy numbers are new and promising

seems quite flexible
is it provably valid...?

10e.g., Mao, M., and Reich, arXiv:2006.15640
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Next lecture

Formal decision theory

Precise-probabilistic version

von Neumann–Morganstern and others
maximize expected utility

Imprecise-probabilistic version

Choquet integrals define lower/upper expected utility
how to optimize?

Applications
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