ST790 — Fall 2022 Imprecise-Probabilistic Foundations of Statistics

Ryan Martin North Carolina State University www4.stat.ncsu.edu/~rmartin

Week 13a

- Regression problems in ML
- Imprecise-probabilistic approaches:
 - IMs and conformal prediction
 - Denoeux's¹ random fuzzy sets

...

¹See, also, Cuoso & Sanchez (*Fuzzy Sets & Systems* 2011)

Quick recap of ML

Ingredients:

- data, e.g., features X_i and labels/responses Y_i
- class $\mathcal F$ of functions, hopefully $y \approx f^\star(x)$ for some $f^\star \in \mathcal F$
- loss function, ℓ_f , to rate quality of f
- Note the absence of a statistical model...
- Training step boils down to "estimating" f by minimizing an empirical risk function, i.e.,

$$\hat{f}_n = \arg\min_{f\in\mathcal{F}} \frac{1}{n} \sum_{i=1}^n \ell_f(X_i, Y_i)$$

- Might need penalty terms to manage complexity, numerical methods (e.g., SGD) will probably be needed too
- Use the trained \hat{f}_n to predict/classify new examples

- Now focus on *continuous* responses Y_i
- Common choice of loss: $\ell_f(x, y) = \{y f(x)\}^2$
- Familiar case of *linear model*

$$\bullet \mathcal{F} = \{ x \mapsto \beta^\top x : \beta \in \mathbb{R}^q \}$$

- then \hat{f}_n is the least-squares fitted mean response
- "Linear models are too restrictive" not true!
- In fact, linear models are basically all we know:

•
$$\mathcal{F} = \{x \mapsto \beta^\top B^{(m)}(x) : \beta \in \mathbb{R}^m\}$$
 for fixed m

- **...**
- neural networks, etc., are basically (high-dim) linear models in transformed x's

Relationship between y and x could be complex:

- x itself is high-dim
- \blacksquare flexibility baked into ${\mathcal F}$ introduces high-dim parameter

In that case, the empirical risk minimization takes the form

$$\hat{f}_n = \arg\min_{f\in\mathcal{F}} \left\{ \frac{1}{n} \sum_{i=1}^n \ell_f(X_i, Y_i) + \frac{\lambda}{pen(f)} \right\}$$

New pieces:

- pen(f) is a penalty, larger when f is more complex
- e.g., smooth functions are less complex, and sparse β typically makes smoother f_β, so pen(f_β) = ||β||₁ is reasonable
- λ is weight to balance influence of penalty

• Then the solution, \hat{f}_n , depends on (λ, pen)

Uncertainty quantification

- Given \hat{f}_n , we only know how to predict Y_{n+1}
- Again, no matter how fancy the model/algorithm, there's no guarantee that $\hat{f}_n(X_{n+1})$ exactly equals Y_{n+1}
- How to quantify uncertainty?
- With simple models and/or strong assumptions, this is relatively easy to do, solutions would more-or-less agree
- More generally: this is challenging/non-trivial
- Imprecise-probabilistic ideas:
 - Cella and M., arXiv:2112.10234
 - Denoeux, arXiv:2202.08081 and arXiv:2208.00647

Conformal prediction and valid IMs

- Conformal prediction algorithm...
- The output π_n(y | x) defines a x-dependent possibility contour on 𝒱, leads to a possible measure with

$$\overline{\Pi}_n(A \mid x) = \sup_{y \in A} \pi_n(y \mid x), \quad A \subseteq \mathbb{Y}$$

An IM² that achieves strong prediction validity, i.e.,

$$\sup_{\text{exchangeable P}} \mathsf{P}\{\pi_n(Y_{n+1} \mid X_{n+1}) \leq \alpha\} \leq \alpha, \quad \alpha \in [0,1]$$

- Doesn't require "correctly specified models"³
- Predictive probability distributions can't be valid in this sense

 $^2 \rm Connection$ between IMs and CP is made on the random set level; this get-CP-first-then-interpret-as-an-IM is simpler to explain

³More efficient when fitted model is "right"—see, e.g., Slide 20 below

Conformal prediction and valid IMs, cont.

- New extension of DS theory & possibility theory
- Basic road-map:
 - neural net provides a flexible relationship between Y and X
 - observations (X_i, Y_i) allow for learning this relationship
 - quantify uncertainty about Y_{n+1} , given X_{n+1} and training data, via a suitable random fuzzy number
- Need some more background:
 - fuzzy numbers
 - random version thereof

Fuzzy <u>deals</u> deals with ambiguity (Zadeh 1960s)

- Fuzzy logic generalizes Boolean true-or-false logic
- e.g., "Sam is tall" isn't universally true or false
- Fuzzy sets generalize the notion of a (crisp) set
- Fuzzy sets⁴ \tilde{A} in a space \mathbb{Y} are determined by a *membership* function, say, $\mu_{\tilde{A}} : \mathbb{Y} \to [0, 1]$

• a fuzzy set is *crisp* if $\mu_{\widetilde{A}}(y) \in \{0,1\}$ for all y

- membership function of a crisp set is its indicator function
- Membership function assigns to each y ∈ Y a quantitative degree of membership, µ_Ã(y) ∈ [0, 1], to the fuzzy set Ã
- A fuzzy set is characterized by its membership function

⁴Customary to write A for an ordinary set and \tilde{A} for a fuzzy version

Fuzzy sets, cont.

- $\tilde{A} = \{$ cold temperatures when I lived in Chicago $\}$
- $\tilde{B} = \{$ cold temperatures after I moved to NC $\}$

Temp

- Just like for crisp sets, there's a *fuzzy set arithmetic*⁵
- All amount to operations with membership functions
- I'll focus just on fuzzy set intersection⁶
- For fuzzy sets \tilde{A} and \tilde{B} , the intersection $\tilde{A} \cap \tilde{B}$ is defined by the membership function

$$\mu_{\tilde{A}\cap\tilde{B}}(y)=\mu_{\tilde{A}}(y)\star\mu_{\tilde{B}}(y)$$

• " \star " is a *t*-norm,⁷, e.g., $a \star b = ab$ or $a \star b = a \wedge b$

⁶a.k.a. "conjunctive combination"

⁷Triangular norm: https://en.wikipedia.org/wiki/T-norm

⁵e.g., see Hanss's Applied Fuzzy Arithmetic

Fuzzy sets, cont.

- $\tilde{A} = \{$ cold temperatures when I lived in Chicago $\}$
- $\tilde{B} = \{$ cold temperatures after I moved to NC $\}$
- $\tilde{A} \cap \tilde{B}$, product t-norm

Temp

- Close connection to possibility theory
- The *height* of \tilde{A} is $\sup_{y} \mu_{\tilde{A}}(y)$
- If height equals 1, then
 - $\tilde{A} \longleftrightarrow$ possibility measure
 - former's membership fn is the latter's contour fn
- Like Dempster's rule combines of belief functions, the fuzzy set intersection can combine possibility measures
- That is, if π_1 and π_2 are possibility contours on \mathbb{Y} , then these can be combined to a new possibility contour⁸ as

$$\pi_{1\star 2}(y) = \frac{\pi_1(y) \star \pi_2(y)}{\sup_{\nu} \{\pi_1(\nu) \star \pi_2(\nu)\}}, \quad y \in \mathbb{Y}$$

⁸See Week 09b, Slide 14

Random fuzzy sets

• On a prob space $(\Omega, \cdot, \mathsf{P})$, define $\tilde{Y} : \Omega \to [0, 1]^{\mathbb{Y}}$ s.t.

 $ilde{Y}(\omega)$ is a fuzzy set in $\mathbb {Y}$ for each $\omega\in \Omega$

Defines a *random fuzzy set*

If height(\tilde{Y}) = 1 P-a.s., then there's a random possibility meas

$$\operatorname{poss}_{\widetilde{Y}}(A) := \sup_{y \in A} \mu_{\widetilde{Y}}(y), \quad A \subseteq \mathbb{Y}$$

The UQ on Y provided by a random fuzzy number can be described by the upper probability

$$\overline{\Pi}(A) = \int \mathsf{poss}_{\widetilde{Y}(\omega)}(A) \,\mathsf{P}(d\omega), \quad A \subseteq \mathbb{Y}$$

• Corresponding lower probability, $\underline{\Pi}$, is a belief function

- For one or more random fuzzy sets (RFSs), the evidence they contain can be pooled using fuzzy set intersection
- The rule is associative, so it suffices to explain for two RFSsRoughly:
 - two indep pieces of evidence $(\Omega_j, \cdot, \mathsf{P}_j, \tilde{Y}_j)$, j = 1, 2
 - $(\widetilde{Y}_1 \cap \widetilde{Y}_2)(\omega_1, \omega_2)$ has membership function

$$\mu_{(\tilde{Y}_1 \cap \tilde{Y}_2)(\omega_1, \omega_2)}(y) \propto \mu_{\tilde{Y}_1(\omega_1)}(y) \star \mu_{\tilde{Y}_2(\omega_2)}(y), \quad y \in \mathbb{Y}$$

 \blacksquare final UQ obtained by averaging wrt $\mathsf{P}_1\times\mathsf{P}_2$

• With *n* pieces of evidence/RFSs, final UQ on \mathbb{Y} is

$$\overline{\Pi}(A) = \int \mathsf{poss}_{\tilde{Y}_1 \cap \cdots \cap \tilde{Y}_n}(A) \, d(\mathsf{P}_1 \times \cdots \mathsf{P}_n)$$

• A Gaussian fuzzy number⁹ corresponds to a membership fn

$$\mu(y) = \exp\{-\frac{h}{2}(y-m)^2\}, \quad y \in \mathbb{R}$$

- Parametrized by a mean m and precision $h \ge 0$
- Key property: Gaussian fuzzy numbers are closed under fuzzy set intersection
- A Gaussian random fuzzy number \tilde{Y} is a Gaussian fuzzy number with a mean $M \sim N(\theta, \sigma^2)$, i.e.,

$$\mu_{ ilde{Y}(\omega)}(y) = \exp[-rac{h}{2}\{y - M(\omega)\}^2], \quad y \in \mathbb{R}, \quad \omega \in \Omega$$

• Notation: $\tilde{Y} \sim \tilde{N}(\theta, \sigma^2, h)$

⁹A "fuzzy number" is just a fuzzy interval

Evidential neural net regression

Prototypes w_1, \ldots, w_J in \mathbb{R}^q

For a generic $x \in \mathbb{R}^q$ and for prototype $j = 1, \dots, J$:

• activation of prototype j, $a_j(x) = \exp\{-\gamma_j^2 ||x - w_j||^2\}$

mean function
$$\mu_j(x) = \alpha_j + \beta_j^\top x$$
GRFN $\tilde{Y}_j(x) \sim \tilde{N}(\mu_j(x), \sigma_i^2, a_j(x)h_j)$

- Take fuzzy set intersection of the *j*-specific GRFNs...
- Gives $\tilde{Y}(x) \sim \tilde{N}(\mu(x), \sigma^2(x), h(x))$, with, e.g.,

$$\mu(x) = \frac{\sum_{j=1}^{J} a_j(x) h_j \mu_j(x)}{\sum_{j=1}^{J} a_j(x) h_j}$$

Parameters $(w_j, \gamma_j, \beta_j, \alpha_j, \sigma_j^2, h_j)$ learned from training data

ENNreg, cont.

Left: from Sec 4.1 of Denoeux's *BELIEF'22* paper
Right: conformal prediction IM on a "similar" data set

- Today: regression & imprecise-probabilistic methods
- Conformal prediction is powerful, but has limitations:
 - computationally expensive
 - exchangeability isn't always an appropriate assumption¹⁰
 - marginally but not conditionally valid
 - efficiency gains by replacing "sup P" with a general "P"?
- Random fuzzy numbers are new and promising
 - seems quite flexible
 - is it provably valid...?

¹⁰e.g., Mao, M., and Reich, arXiv:2006.15640

- Formal decision theory
- Precise-probabilistic version
 - von Neumann–Morganstern and others
 - maximize expected utility
- Imprecise-probabilistic version
 - Choquet integrals define lower/upper expected utility
 - how to optimize?
- Applications