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This lecture

m Regression problems in ML
m Imprecise-probabilistic approaches:

m [Ms and conformal prediction
m Denoeux's® random fuzzy sets

!See, also, Cuoso & Sanchez (Fuzzy Sets & Systems 2011)
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Quick recap of ML

m Ingredients:

m data, e.g., features X; and labels/responses Y;
m class F of functions, hopefully y ~ f*(x) for some f* € F
m loss function, /¢, to rate quality of f

Note the absence of a statistical model...

Training step boils down to “estimating” f by minimizing an
empirical risk function, i.e.,

" 1<
fo = argmin — > le(X, Y5)
i=1

Might need penalty terms to manage complexity, numerical
methods (e.g., SGD) will probably be needed too

Use the trained f,, to predict/classify new examples
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Regression case

m Now focus on continuous responses Y;
m Common choice of loss: £¢(x,y) = {y — f(x)}?
m Familiar case of linear model

[ f:£Xi—>ﬂTXZﬂERq}

m then f, is the least-squares fitted mean response
m ‘“Linear models are too restrictive” — not true!
m In fact, linear models are basically all we know:

m F={x— BTBM(x):3cRM} for fixed m

..

m neural networks, etc., are basically (high-dim) linear models in
transformed x's
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Regression case, cont.

Relationship between y and x could be complex:
m x itself is high-dim
m flexibility baked into F introduces high-dim parameter

m In that case, the empirical risk minimization takes the form

~

NEES
fn= arg?”él]rj_{; z;ﬂf(X,, Yi)+ )\pen(f)}

New pieces:

m pen(f) is a penalty, larger when f is more complex

m e.g., smooth functions are less complex, and sparse (3 typically
makes smoother f3, so pen(fz) = || 3|1 is reasonable

m )\ is weight to balance influence of penalty

m Then the solution, f,, depends on (A, pen)
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Uncertainty quantification

m Given 7?,, we only know how to predict Y11

m Again, no matter how fancy the model/algorithm, there's no
guarantee that 7,(X,+1) exactly equals Y41

m How to quantify uncertainty?

m With simple models and/or strong assumptions, this is
relatively easy to do, solutions would more-or-less agree

m More generally: this is challenging/non-trivial

m Imprecise-probabilistic ideas:

m Cella and M., arXiv:2112.10234
m Denoeux, arXiv:2202.08081 and arXiv:2208.00647
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Conformal prediction and valid IMs

Conformal prediction algorithm...

The output 7,(y | x) defines a x-dependent possibility
contour on Y, leads to a possible measure with

Ma(A|x)=supma(y | x), ACY
yeEA

m An IM2 that achieves strong prediction validity, i.e.,

sup P{mn(Yn+1 | Xn41) <a} <a, a€]0,1]

exchangeable P

"3

Doesn't require “correctly specified models

m Predictive probability distributions can't be valid in this sense

2Connection between IMs and CP is made on the random set level; this
get-CP-first-then-interpret-as-an-IM is simpler to explain
3More efficient when fitted model is “right’—see, e.g., Slide 20 below
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Conformal prediction and valid IMs, cont.

Plausibility
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Random fuzzy numbers

m New extension of DS theory & possibility theory
m Basic road-map:
m neural net provides a flexible relationship between Y and X
m observations (X;, Y;) allow for learning this relationship
m quantify uncertainty about Y1, given X,;1 and training
data, via a suitable random fuzzy number
m Need some more background:

m fuzzy numbers
m random version thereof
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Fuzzy _ deals with ambiguity (Zadeh 1960s)

m Fuzzy logic generalizes Boolean true-or-false logic
i . "o .
m e.g., “Sam is tall” isn't universally true or false

Fuzzy sets generalize the notion of a (crisp) set
Fuzzy sets* A in a space Y are determined by a membership
function, say, puz : Y — [0, 1]

m a fuzzy set is crisp if pz(y) € {0,1} for all y

m membership function of a crisp set is its indicator function

Membership function assigns to each y € Y a quantitative
degree of membership, 1;(y) € [0,1], to the fuzzy set A

A fuzzy set is characterized by its membership function

*Customary to write A for an ordinary set and A for a fuzzy version
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Fuzzy sets, cont.

m A = {cold temperatures when | lived in Chicago}

m B = {cold temperatures after | moved to NC}

Membership
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Fuzzy sets, cont.

Just like for crisp sets, there's a fuzzy set arithmetic®
All amount to operations with membership functions
I'll focus just on fuzzy set intersection®

For fuzzy sets A and B, the intersection AN B is defined by
the membership function

ting(Y) = ui(y) * pa(y)

%" isa t-norm,”, e.g., axb=aboraxb=aAb

Se.g., see Hanss's Applied Fuzzy Arithmetic
ba.k.a. “conjunctive combination”

"Triangular norm: https://en.wikipedia.org/wiki/T-norm
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Fuzzy sets, cont.

m A = {cold temperatures when | lived in Chicago}
m B = {cold temperatures after | moved to NC}
m ANB,

product t-norm

Membership
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Fuzzy sets, cont.

m Close connection to possibility theory
m The height of A is sup, 14(y)
m If height equals 1, then
m A possibility measure
m former’'s membership fn is the latter’s contour fn

m Like Dempster's rule combines of belief functions, the fuzzy
set intersection can combine possibility measures

m That is, if 71 and 75 are possibility contours on Y, then these
can be combined to a new possibility contour® as

m1(y) x m2(y)
sup, {m1(v) * m2(v)}’

m1x2(y) = yeY

8See Week 09b, Slide 14
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Random fuzzy sets

m On a prob space (2, -, P), define Y. Q- [0,1]" s.t.
Y(w) s a fuzzy set in Y for each w € Q

Defines a random fuzzy set

If height(Y) = 1 P-a.s., then there's a random possibility meas

possy(A) :==supuy(y), ACY
yEA

m The UQ on Y provided by a random fuzzy number can be
described by the upper probability

f(A) = /poss;,(w)(A) P(dw), ACY

Corresponding lower probability, 1, is a belief function

15 /21



Random fuzzy sets, cont.

m For one or more random fuzzy sets (RFSs), the evidence they
contain can be pooled using fuzzy set intersection

m The rule is associative, so it suffices to explain for two RFSs
m Roughly:

m two indep pieces of evidence (2}, -, P;, \N’J) j=12

m (Y1 N Y2)(w1,w2) has membership function

() r,w0) ) € B9 () V) * By (V) Y €Y

m final UQ obtained by averaging wrt P; x P»
m With n pieces of evidence/RFSs, final UQ on Y is

fi(A) = / possy, e (A)d(P1 % - P)
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Gaussian random fuzzy numbers

m A Gaussian fuzzy number® corresponds to a membership fn

u(y) =exp{—2(y —m)’}, yeR

Parametrized by a mean m and precision h > 0

Key property: Gaussian fuzzy numbers are closed under fuzzy
set intersection

m A Gaussian random fuzzy number Y is a Gaussian fuzzy
number with a mean M ~ N(6,02), i.e.,

1y () (Y) = exp[- 2y —MW)}?’], yeR, weQ

m Notation: Y ~ N(6, 02, h)

°A “fuzzy number” is just a fuzzy interval
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Evidential neural net regression

Prototypes wy, ..., wy in RY

For a generic x € R9 and for prototype j =1,...,J:
m activation of prototype j, a;(x) = exp{—77llx — w;[|*}
m mean function pj(x) = a; + 6J-Tx
= GRFN ¥(x) ~ N(1(x), 02, 3,(x)h;)

Take fuzzy set intersection of the j-specific GRFNs...

Gives Y(x) ~ N(u(x),az(x), h(x)), with, e.g.,

() = So71 aj(x) hy ()
Ef:l aj(x) hj

Parameters (Wj,q/j,ﬂj,aj,af, h;) learned from training data
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ENNreg, cont.

m Left: from Sec 4.1 of Denoeux's BELIEF'22 paper

m Right: conformal prediction IM on a “similar’ data set
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Concluding remarks

m Today: regression & imprecise-probabilistic methods

m Conformal prediction is powerful, but has limitations:

computationally expensive

exchangeability isn’t always an appropriate assumption®®
marginally but not conditionally valid

efficiency gains by replacing “sup P with a general “P"?

m Random fuzzy numbers are new and promising

seems quite flexible
is it provably valid...?

loe.g.v Mao, M., and Reich, arXiv:2006.15640
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Next lecture

m Formal decision theory
m Precise-probabilistic version

m von Neumann—Morganstern and others
® maximize expected utility

m Imprecise-probabilistic version

m Choquet integrals define lower/upper expected utility
m how to optimize?

m Applications

21/21



