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This lecture

Formal decision theory

Precise-probabilistic version

von Neumann–Morganstern
maximize expected utility

Imprecise-probabilistic version

Choquet integrals define lower/upper expected utility
how to optimize?

Applications along the way
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Setup

Ingredients:

uncertain variable X ∈ X
collection f ∈ F of possible actions
reward/value/utility1 function u : F × X→ R

Then the “game” goes as follows:

if I choose action f
and it happens that X = x
then I get utility uf (x)

Decision theory: which f should I pick???

Fundamentally important problem!

of course in STAT, ML, AI, etc.
also in real, everyday life

1We want to maximize “utility.” An alternative formulation uses “loss,”
which we want to minimize. The two are equivalent: loss = −utility
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Setup, cont.

Why is it challenging?

In general, no f uniformly maximizes utility

Toy example taken from Denoeux (IJAR 2019, Example 1)

Not much more2 can be said without more structure

relaxing “uniformly maximizes” and/or
non-vacuous UQ about X

Utility x1 x2 x3
f1 37 25 23
f2 49 70 2
f3 4 96 1
f4 22 76 25
f5 35 20 23

2Note that f5 is always strictly worse than f1
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Setup, cont.

Need to formalize what it means to compare actions

Requires a preference relation, a sort of “ordering” on F
For f , f ? ∈ F , say

f � f ? iff “f ? is at least as desirable as f ”
f ≺ f ? iff “f ? is strictly more desirable than f ”

A preference relation is a preorder iff

reflexive: f � f for all f
transitive: f � f ′, f ′ � f ? =⇒ f � f ?

Preorder is complete if in every pair of actions, one is at least
as desirable as the other, i.e., f � f ′ or f ′ � f

A complete preorder has at least one greatest element, i.e., a
f ? such that f ? � f for all f
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Vacuous UQ

Suppose we’re ignorant3 about X

What are some reasonable preference relations?

Sort numerical summaries of x 7→ uf (x)

Two extreme possibilities, optimistic and pessimistic4

maximax: f � f ? ⇐⇒ maxx uf (x) ≤ maxx uf ?(x)
maximin: f � f ? ⇐⇒ minx uf (x) ≤ minx uf ?(x)

Utility x1 x2 x3 min max

f1 37 25 23 23 37
f2 49 70 2 2 70
f3 4 96 1 1 96
f4 22 76 25 22 76

3Like in non-Bayesian statistical decision theory
4This is the familiar pessimistic notion of “minimax” in statistics
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Probabilistic UQ

Suppose there’s a (precise) prob distribution P on X
Totally reasonable strategy:

X 7→ uf (X ) is a random variable for each f
seek f that maximizes expected utility f 7→ Puf
i.e., f � f ? ⇐⇒ Puf ≤ Puf ?

“MEU” is Bayesian decision theory in statistics

prior distribution for Θ
data y + prior + Bayes’s rule = posterior Πy

Bayes estimator minimizes f 7→ Πy `f
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Probabilistic UQ, cont.

Toy example, revisited:

maximax
maximin
max Puf for P = (0.30, 0.50, 0.20)

Utility x1 x2 x3 min max Puf
f1 37 25 23 23 37 28.1
f2 49 70 2 2 70 50.1
f3 4 96 1 1 96 49.4
f4 22 76 25 22 76 49.6
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Probabilistic UQ, cont.

WLOG, consider a slightly different setup:

action f ∈ F is a map f : X→ C
C is a space of consequences
taking action f ∈ F when X = x leads to f (x) ∈ C
then u : C→ R measures utility of a consequence

If X ∼ P, then C = f (X ) is a RV w/ distribution Pf −1

A probability distribution on C is called a lottery5

lottery returns to me a consequence chosen at random
I know which consequences are desirable and which ones aren’t
so in principle there are some lotteries I prefer more others

Properties of a preference order on lotteries...?6

5Lotteries will be denoted by letters Q,Q?, . . .
6von Neumann–Morganstern (1947), Theory Games & Economic Behavior

9 / 20



Probabilistic UQ, cont.

Axioms for preferences � on lotteries.

Completeness: � is a complete preorder

Continuity: if Q− ≺ Q ≺ Q+, then there exists α, β ∈ (0, 1) s.t.

αQ− + (1− α)Q+ ≺ Q ≺ βQ− + (1− β)Q+

Independence: for any (Q,Q ′,Q?) and any α ∈ (0, 1),

Q � Q? ⇐⇒ αQ + (1− α)Q ′ � αQ? + (1− α)Q ′

Theorem (von Neumann–Morganstern).

A preference � for lotteries on C satisfies the above axioms if and only if
there exists a utility function u : C→ R such that

Q � Q? ⇐⇒ Qu ≤ Q?u

i.e., � satisfies axioms iff it corresponds to maximizing expected utility
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Probabilistic UQ, cont.

vNM’s result is powerful, but if axioms don’t match real-world
preferences, then the theorem is useless

Unfortunately,..... there’s Ellsberg paradox7

vNM theory says A � B =⇒ C � D
Ellsberg: for some people, A � B and C ≺ D

7https://en.wikipedia.org/wiki/Ellsberg_paradox
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Imprecise-probabilistic UQ

For various reasons, e.g., Bayes with imprecise prior, we might
not have a precise probability distribution on X
Let (P,P) be a lower/upper probability on X
Can calculate lower/upper expected utility using Choquet

e.g., if P is a belief function with mass m, then

Puf =
∑
A

{
min
x∈A

uf (x)
}
m(A)

Generalizations of vNM:8

maximax: maximize f 7→ Puf
maximin: maximize f 7→ Puf

Ellsberg: strategy (A,D) is maximin optimal9

8e.g., Gilboa & Schmidler (J Math Econ 1989)
9see page 204 in Intro to IP
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Imprecise-probabilistic UQ

Lots of other papers with different perspectives

One that aligns with Walley’s theory is maximality

Action f ? is maximal iff P(uf ? − uf ) ≥ 0 ∀ f ∈ F
f ? maximal is equivalent to

Puf ? ≥ Puf for all f and all P ∈ C (P)

See Chapter 8 in Intro to IP and the references therein
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Applications

Robust/generalized Bayes has an imprecise prior distribution,
characterized by a credal set of precise priors

If there’s just a single prior, then the Bayes estimator is the
one that minimizes posterior expected loss

Set of priors → set of posteriors

Lower/upper posterior expected loss

Common to use the minimax generalized Bayes rule10

Computation can be a challenge, but Wasserman and others
have provided formulas for certain prior classes

10Berger et al (TEST 1994), etc.
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Applications, cont.

IM developments have focused on inference, not decisions

Same is true for fiducial, confidence distributions, etc.11

Nothing stopping us from using the above theory

Suppose prior info about Θ is vacuous, and that (Πy ,Πy ) is
the valid IM based on data Y = y

If it has the form of a possibility measure, then

Πyh =

∫ 1

0

{
sup

θ:πy (θ)>α
h(θ)

}
dα, h ≥ 0

For non-negative loss `f , define

f̂ (y) = arg min
f

Πy `f ← IM’s minimax action

11Except for Taraldsen & Lindqvist (Ann Stat 2013)
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Applications, cont.
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Applications, cont.

Action f̂ (y) is, e.g., an estimate of some feature of Θ

Can evaluate f̂ (Y ) based on sampling dist properties

unbiased
small mean square error

But what role does the IM’s validity property play?12

Intuitively:

validity implies error control
errors in decision-making happen when there exists f such that
Πy `f is much less than `f (·) near the true θ

Validity implies these “decision-making errors” are controlled
in a certain sense that’s hard to describe13

12M., arXiv:2112.13247
13I think better results are possible...
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Applications, cont.

R̃(y , θ) ≈ inf
f

Πy `f
maximum of `f (·) nearby true θ
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Conclusion

Decision theory is a fundamentally important problem

Pessimistic minimax/maximin is conservative

With a prob distribution for X , more can be done

This is Bayesian decision theory

Having a precise prior might not be realistic in all applications,
so extensions to imprecise probability are available

This is robust/generalized Bayes decision theory

Valid IMs and decisions...

very little is known, lots more work could be done
interested in case with partial priors
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Next lecture

Model uncertainty

Imprecision in the model itself

Missing/coarse data
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