ST790 — Fall 2022 Imprecise-Probabilistic Foundations of Statistics

Ryan Martin North Carolina State University www4.stat.ncsu.edu/~rmartin

Week 13b

- Formal decision theory
- Precise-probabilistic version
 - von Neumann–Morganstern
 - maximize expected utility
- Imprecise-probabilistic version
 - Choquet integrals define lower/upper expected utility
 - how to optimize?
- Applications along the way

Ingredients:

- uncertain variable $X \in \mathbb{X}$
- collection $f \in \mathcal{F}$ of possible actions
- reward/value/utility¹ function $u : \mathcal{F} \times \mathbb{X} \to \mathbb{R}$
- Then the "game" goes as follows:
 - if I choose action f
 - and it happens that X = x
 - then I get utility $u_f(x)$
- Decision theory: which f should I pick???
- Fundamentally important problem!
 - of course in STAT, ML, AI, etc.
 - also in real, everyday life

¹We want to maximize "utility." An alternative formulation uses "loss," which we want to minimize. The two are equivalent: loss = -utility

Setup, cont.

- Why is it challenging?
- In general, no f uniformly maximizes utility
- Toy example taken from Denoeux (IJAR 2019, Example 1)
- Not much more² can be said without more structure
 - relaxing "uniformly maximizes" and/or
 - non-vacuous UQ about X

Utility	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3
f_1	37	25	23
f_2	49	70	2
f ₃	4	96	1
f ₄	22	76	25
<i>f</i> 5	35	20	23

²Note that f_5 is always *strictly worse* than f_1

Setup, cont.

- Need to formalize what it means to compare actions
- Requires a *preference relation*, a sort of "ordering" on *F*
- For $f, f^{\star} \in \mathcal{F}$, say
 - $f \preceq f^*$ iff " f^* is at least as desirable as f"
 - $f \prec f^*$ iff " f^* is strictly more desirable than f"
- A preference relation is a preorder iff
 - reflexive: $f \leq f$ for all f
 - transitive: $f \leq f', f' \leq f^* \implies f \leq f^*$
- Preorder is *complete* if in every pair of actions, one is at least as desirable as the other, i.e., f ≤ f' or f' ≤ f
- A complete preorder has at least one greatest element, i.e., a f^* such that $f^* \succeq f$ for all f

Vacuous UQ

- Suppose we're ignorant³ about X
- What are some reasonable preference relations?
- Sort numerical summaries of $x \mapsto u_f(x)$
- Two extreme possibilities, optimistic and pessimistic⁴

$$\blacksquare \text{ maximax: } f \preceq f^* \iff \max_x u_f(x) \le \max_x u_{f^*}(x)$$

maximin:
$$f \leq f^* \iff \min_x u_f(x) \leq \min_x u_{f^*}(x)$$

Utility	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	min	max
f_1	37	25	23	23	37
f_2	49	70	2	2	70
f ₃	4	96	1	1	96
f ₄	22	76	25	22	76

³Like in non-Bayesian statistical decision theory

⁴This is the familiar pessimistic notion of "minimax" in statistics

- Suppose there's a (precise) prob distribution P on $\mathbb X$
- Totally reasonable strategy:
 - $X \mapsto u_f(X)$ is a random variable for each f
 - seek f that maximizes expected utility $f \mapsto Pu_f$

• i.e.,
$$f \leq f^* \iff \mathsf{P}u_f \leq \mathsf{P}u_{f^*}$$

- "MEU" is Bayesian decision theory in statistics
 - prior distribution for Θ
 - data $y + \text{prior} + \text{Bayes's rule} = \text{posterior } \Pi_y$
 - Bayes estimator minimizes $f \mapsto \prod_y \ell_f$

Toy example, revisited:

maximax

maximin

• $\max Pu_f$ for P = (0.30, 0.50, 0.20)

Utility	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	min	max	Puf
f_1	37	25	23	23	37	28.1
f_2	49	70	2	2	70	50.1
f_3	4	96	1	1	96	49.4
f ₄	22	76	25	22	76	49.6

WLOG, consider a slightly different setup:

- action $f \in \mathcal{F}$ is a map $f : \mathbb{X} \to \mathbb{C}$
- $\blacksquare \ \mathbb{C}$ is a space of *consequences*
- taking action $f \in \mathcal{F}$ when X = x leads to $f(x) \in \mathbb{C}$
- then $u:\mathbb{C}\to\mathbb{R}$ measures utility of a consequence
- If $X \sim P$, then C = f(X) is a RV w/ distribution Pf^{-1}
- A probability distribution on C is called a *lottery*⁵
 - Iottery returns to me a consequence chosen at random
 - I know which consequences are desirable and which ones aren't
 - so in principle there are some lotteries I prefer more others
- Properties of a preference order on lotteries...?⁶

⁵Lotteries will be denoted by letters Q, Q^{\star}, \ldots

⁶von Neumann–Morganstern (1947), *Theory Games & Economic Behavior*

Probabilistic UQ, cont.

Axioms for preferences \leq on lotteries.

- Completeness: \leq is a complete preorder
- Continuity: if $Q^- \prec Q \prec Q^+$, then there exists $\alpha, \beta \in (0, 1)$ s.t.

$$\alpha Q^{-} + (1-\alpha)Q^{+} \prec Q \prec \beta Q^{-} + (1-\beta)Q^{+}$$

• Independence: for any (Q, Q', Q^*) and any $\alpha \in (0, 1)$,

$$Q \preceq Q^{\star} \iff \alpha Q + (1 - \alpha)Q' \preceq \alpha Q^{\star} + (1 - \alpha)Q'$$

Theorem (von Neumann–Morganstern).

A preference \leq for lotteries on \mathbb{C} satisfies the above axioms if and only if there exists a utility function $u : \mathbb{C} \to \mathbb{R}$ such that

$$Q \preceq Q^{\star} \iff Qu \leq Q^{\star}u$$

i.e., \preceq satisfies axioms iff it corresponds to maximizing expected utility

Probabilistic UQ, cont.

- vNM's result is powerful, but if axioms don't match real-world preferences, then the theorem is useless
- Unfortunately,..... there's Ellsberg paradox⁷
 - vNM theory says $A \succeq B \implies C \succeq D$
 - Ellsberg: for some people, $A \succ B$ and $C \prec D$

⁷https://en.wikipedia.org/wiki/Ellsberg_paradox

Imprecise-probabilistic UQ

- For various reasons, e.g., Bayes with imprecise prior, we might not have a precise probability distribution on X
- Let $(\underline{P}, \overline{P})$ be a lower/upper probability on \mathbb{X}
- Can calculate lower/upper expected utility using Choquet
- e.g., if \underline{P} is a belief function with mass m, then

$$\underline{\mathsf{P}}u_f = \sum_{A} \left\{ \min_{x \in A} u_f(x) \right\} m(A)$$

Generalizations of vNM:⁸

• maximax: maximize $f \mapsto \overline{\mathsf{P}}u_f$

• maximin: maximize $f \mapsto \underline{P}u_f$

Ellsberg: strategy (A, D) is maximin optimal⁹

 ⁸e.g., Gilboa & Schmidler (*J Math Econ* 1989)
 ⁹see page 204 in *Intro to IP*

- Lots of other papers with different perspectives
- One that aligns with Walley's theory is maximality
- Action f^{\star} is maximal iff $\underline{\mathsf{P}}(u_{f^{\star}} u_{f}) \geq 0 \ \forall \ f \in \mathcal{F}$
- f^* maximal is equivalent to

$$Pu_{f^{\star}} \ge Pu_f$$
 for all f and all $P \in \mathscr{C}(\underline{P})$

See Chapter 8 in Intro to IP and the references therein

- Robust/generalized Bayes has an imprecise prior distribution, characterized by a credal set of precise priors
- If there's just a single prior, then the Bayes estimator is the one that minimizes posterior expected loss
- Set of priors \rightarrow set of posteriors
- Lower/upper posterior expected loss
- Common to use the minimax generalized Bayes rule¹⁰
- Computation can be a challenge, but Wasserman and others have provided formulas for certain prior classes

¹⁰Berger et al (*TEST* 1994), etc.

- IM developments have focused on *inference*, not decisions
- Same is true for fiducial, confidence distributions, etc.¹¹
- Nothing stopping us from using the above theory
- Suppose prior info about Θ is vacuous, and that $(\underline{\Pi}_y, \overline{\Pi}_y)$ is the valid IM based on data Y = y
- If it has the form of a possibility measure, then

$$\overline{\Pi}_y h = \int_0^1 \left\{ \sup_{\theta: \pi_y(heta) > lpha} h(heta)
ight\} dlpha, \quad h \ge 0$$

• For non-negative loss ℓ_f , define

$$\widehat{f}(y) = rg \min_{f} \overline{\Pi}_{y} \ell_{f} \qquad \leftarrow \mathsf{IM's} \ \mathsf{minimax} \ \mathsf{action}$$

¹¹Except for Taraldsen & Lindqvist (Ann Stat 2013)

Figure 4: Binomial example with n = 18 and y = 7. Panel (a) shows the possibility contour $\pi_y(\vartheta)$; dashed line shows the weighted squared error loss function $\ell_a(\vartheta)$, when a = 0.2. Panel (b) shows the (upper) expected loss functions, $a \mapsto \overline{\Pi}_y \ell_a$ (solid) and $a \mapsto Q_y^* \ell_a$ (dashed), for the weighted squared error loss function.

- Action $\hat{f}(y)$ is, e.g., an estimate of some feature of Θ
- Can evaluate $\hat{f}(Y)$ based on sampling dist properties
 - unbiased
 - small mean square error
- But what role does the IM's validity property play?¹²
- Intuitively:
 - validity implies error control
 - errors in decision-making happen when there exists f such that $\overline{\Pi}_y \ell_f$ is much less than $\ell_f(\cdot)$ near the true θ
- Validity implies these "decision-making errors" are controlled in a certain sense that's hard to describe¹³

¹²M., arXiv:2112.13247

¹³I think better results are possible...

Figure 5: The black line shows the distribution function of $\widetilde{R}(Y,\theta)$, as defined in (14), for the binomial IM described in Section 4.3.2. The gray line shows the distribution function for the version of $\widetilde{R}(Y,\theta)$ for the fiducial IM. The diagonal line corresponds to the Unif(0,1) distribution function.

Conclusion

- Decision theory is a fundamentally important problem
- Pessimistic minimax/maximin is conservative
- With a prob distribution for X, more can be done
- This is *Bayesian decision theory*
- Having a precise prior might not be realistic in all applications, so extensions to imprecise probability are available
- This is robust/generalized Bayes decision theory
- Valid IMs and decisions...
 - very little is known, lots more work could be done
 - interested in case with partial priors

- Model uncertainty
- Imprecision in the model itself
- Missing/coarse data