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This lecture

m Uncertainty about the model
m setup, challenges, etc.
m Occam’s razor & regularization
m partial priors
m Imprecision in the model
m missing data
m coarse data
.



Introduction

In our stat/ML discussions, we've assumed that the statistical
model is known & precise
m But this is unrealistic, often there's

® uncertainty about the model
m imprecision in the model

m Model uncertainty, | think, is clear/easy to imagine

m different models being entertained: normal vs heavy-tailed
m “model” is of direct interest, e.g., variable selection

Model imprecision isn't as clear/familiar (at least to me)

m e.g., manifests is when data are missing/coarse
m can also be “imprecisely specified”



Model uncertainty

Let M € M represent the uncertain model
Model-specific parameter ©; € Ty, given M
Density/mass function for Y depends on (M, ©y)

Examples:

® sparse normal mean vector
m M = power set of {1,2,...,n}
m Ty = n-vectors with Q's in the entries corresponding to M°
| (Y | M,@M) ~ N,,(@M, /,,)

® mixture model
m M={1,2,...}
m Oy = (W, ... Wl A M) for M e M
m PDF/PMF: y — >0 whpam(y)

m Goal: quantify uncertainty about M, given Y =y



Model uncertainty, cont.

m Can identify © as the pair (M, ©)
m Then M is the interest parameter, ©; is a nuisance
m Goal is marginal inference on M
m Unique aspects of this marginal inference problem:
m M is discrete, but could be very large
m data necessarily supports® the most complex M € M
m Last point explains the need? for regularization
m Classical ways to do this:
m frequentists use “ad hoc” penalties: AIC, BIC, etc.
m Bayesians need a precise prior on (M, ©p)
m Imprecise probability, i.e., partial priors, seems promising

1This is why you can't use R? for variable selection in regression!
2Some inference can be done w/o regularization (M., ISIPTA’'19)



Valid partial-prior marginal IMs

Let L,(m,6p,) denote the likelihood function
4

m Occam’s razor>-motivated partial prior:
m informative about M, vacuous on QO

i.e., g(m,0,) =q(m), meM

assume q is a possibility contour on M

g = 1 at the “simplest M,"” decreasing in complexity

Profile relative likelihood for M:

2y, m) = — Pl Ly(m,0m)q(m)

= , meM
sup,, supg, Ly (4. 0,) q(p)

m Red terms might be easy to compute...

3The principle of parsimony, i.e., simpler models are preferred to more
complex models, https://en.wikipedia.org/wiki/Occam’ s_razor
*Of course, this isn't the only option


https://en.wikipedia.org/wiki/Occam's_razor

Valid marginal IMs, cont.

m Follow the general framework | described before:
my(m) = upper probability of “n(Y, M) < n(y, m)"

1
:/ sup Py o{n(Y,u) <n(y,m)}da
0 (10):9(p)>a

m Computation???
General validity® results apply here, e.g.,

m valid “probabilistic reasoning” about M
m certain coherence-like properties hold
m {m:m,(m)> a}isa 100(1 — a)% confidence set for M

m To my knowledge, no other results like this are available...

®Recall, “validity” here is wrt the imprecise joint dist for (Y, M, ©y)



Sparse normal mean

m Partial prior: g(M) = g, only depends on cardinality M|
m Relative likelihood®

exp(—ﬁ Zig/\// Yi2) qim
maneO:n{eXp(_%ﬂ Zi>k |Y|[2,]) qx}

U(Yv M) -

Distribution of (Y, M) as a function of Y when ©pc = 07
In particular, how does the distribution depend on ©y; # 07

Conjecture: n(Y, M) is stochastically largest when ©y; =0

Intuitive explanation:

® a Y; with large non-zero mean can only make den small
m smaller denominator makes ratio n( Y, M) larger
m larger n(Y, M) makes smaller x — P{n(Y, M) < x}

1Y |y > | Yl > -+ > | Y|, reverse order statistics



Sparse normal mean, cont.

The conjecture would drastically simplify the computation

In particular, if all ©'s are zero, then
m can use the same Y samples for all the Monte Carlo evals
m (Y, M) Z (Y, |M])

m Form is actually pretty simple:

n

m(m) = (g — qe-1)Pypp{n(Y. k) <nly,m)}, meM
k=0

m In my examples below, gk = 0.2, for k =0,1,...,n



Sparse normal mean, cont.

n=3,0=1,and y =(0.1,1.5,2)

1.0

0.8

Plausibility

0.0 0.2
| |
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Sparse normal mean, cont.

n=3,0=1and y =(0.1,1.5,1)

1.0

0.8

Plausibility

0.2
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Wouldn't be too hard to scale this up to larger n
The simplicity is specific to the normal mean problem

Also depends on a conjecture

But keep in mind:

m valid UQ about the model/
m based on partial prior, no unnecessary assumptions needed
m neither Bayes nor frequentist can do this

m How far can this be pushed?
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Model imprecision

m Previously, “Py e" was based on

m a precise model for Y, given © =0
m a partial /imprecise prior for ©

m “Y | ©" could be imprecise too, say, for robustness’
m e.g., an e-contamination nbhd around a given “Py/y"

m Then lower/upper likelihood functions® become relevant

L,(0) =infPyp({y}) = (1 —¢€)pa(y)
Ly(0) = supPy({y}) = (1 —e)pa(y) + ¢

m | don't have much experience with this...

"Huber & Ronchetti's Robust Statistics

8'm assuming Y is discrete here...
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Model /data imprecision

A different perspective emerges with imprecise data®

Start with a simple/extreme case of missing data

m In observational studies, it's common for data to be missing,
e.g., non-response to some/all questions on a survey

Only safe to ignore missing data under strong assumptions

m introduces bias if missingness and response are related
m can't test/check for this because missing data is missing

So great care is needed here...

Turns out to have some connection to imprecise probability

°More generally, partially identified models as in Manski's book
14 /19



Model /data imprecision, cont.

m Y consists of a pair (Y,A)

m Y is the actual response value
m A is the not-missing/missing indicator

m There exists a Y value regardless of A, it's just that we don’t
get to see the value of Y if A =0

There's a marginal distribution for Y

po(y) = wo(1) po(y | A =1)+wy(0) po(y | A =0)

% v v X

Some parts are identified, some aren't

Hence, Manski's partial identifiability terminology

15/19



Model /data imprecision, cont.

Unidentified parts can be effectively anything, so the model is
really a contamination nbhd w/ upper likelihood, etc.

Why no imprecise probability in the missing data literature?

m If one assumes that missingness is completely random
m ie., Po(A =1)is constant in ¢
m then likelihood only depends on the observed y values
m can get MLE etc. directly from this

Assumption might or might not be justifiable

The situation is much more complicated/interesting when
covariates are involved
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Model /data imprecision, cont.

m More generally, data might be coarse
m Measurement of Y has limited precision
m Missing data is an extreme case of zero precision
m censored data is a common example, a result of not being able
to continuously monitor subjects
m Arguably, almost all real problems involve coarse data
m Most natural strategy is a random set model
m Why don't you see this approach in the stat literature?

m might assume data imprecision is negligible compared to...

m like above, if one assumes that coarsening happens randomly,
then likelihood only depends on the “precise model”

m MLE, etc., can be obtained w/o thinking about imprecision

m Again, more complicated/interesting with covariates
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Uncertainty and/or imprecision can be at the model level

Existing approaches can deal with model uncertainty, but
(IMO) not in a satisfactory way:

m frequentists can choose M, but no UQ
m Bayesians get UQ, but it requires a (precise and proper) prior
and has no validity guarantees'®
m New framework for strongly valid marginal IMs applies, at
least in principle, right off the shelf

Questions remain about efficient computation

| didn’t really say anything about model/data imprecision

My very modest goal was just to point out that these issues
exist and deserve serious attention

10Gee plots in M. ISIPTA’'19
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Next lecture

m Simpson's paradox

m general setup & why it's scary
B connection to imprecise probability

m Miscellany
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