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This lecture

Uncertainty about the model

setup, challenges, etc.
Occam’s razor & regularization
partial priors

Imprecision in the model

missing data
coarse data
...
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Introduction

In our stat/ML discussions, we’ve assumed that the statistical
model is known & precise

But this is unrealistic, often there’s

uncertainty about the model
imprecision in the model

Model uncertainty, I think, is clear/easy to imagine

different models being entertained: normal vs heavy-tailed
“model” is of direct interest, e.g., variable selection

Model imprecision isn’t as clear/familiar (at least to me)

e.g., manifests is when data are missing/coarse
can also be “imprecisely specified”
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Model uncertainty

Let M ∈M represent the uncertain model

Model-specific parameter ΘM ∈ TM , given M

Density/mass function for Y depends on (M,ΘM)

Examples:
sparse normal mean vector

M = power set of {1, 2, . . . , n}
TM = n-vectors with 0’s in the entries corresponding to Mc

(Y | M,ΘM) ∼ Nn(ΘM , In)

mixture model

M = {1, 2, . . .}
ΘM = (ωM

1 , . . . , ω
M
M , λ

M
1 , . . . , λ

M
M) for M ∈ M

PDF/PMF: y 7→
∑M

m=1 ω
M
m pλM

m
(y)

Goal: quantify uncertainty about M, given Y = y
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Model uncertainty, cont.

Can identify Θ as the pair (M,ΘM)

Then M is the interest parameter, ΘM is a nuisance

Goal is marginal inference on M

Unique aspects of this marginal inference problem:

M is discrete, but could be very large
data necessarily supports1 the most complex M ∈M

Last point explains the need2 for regularization

Classical ways to do this:

frequentists use “ad hoc” penalties: AIC, BIC, etc.
Bayesians need a precise prior on (M,ΘM)

Imprecise probability, i.e., partial priors, seems promising

1This is why you can’t use R2 for variable selection in regression!
2Some inference can be done w/o regularization (M., ISIPTA’19)
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Valid partial-prior marginal IMs

Let Ly (m, θm) denote the likelihood function

Occam’s razor3-motivated partial prior:4

informative about M, vacuous on ΘM

i.e., q(m, θm) ≡ q(m), m ∈M
assume q is a possibility contour on M
q = 1 at the “simplest M,” decreasing in complexity

Profile relative likelihood for M:

η(y ,m) =
supθm Ly (m, θm) q(m)

supµ supθµ Ly (µ, θµ) q(µ)
, m ∈M

Red terms might be easy to compute...

3The principle of parsimony, i.e., simpler models are preferred to more
complex models, https://en.wikipedia.org/wiki/Occam’s_razor

4Of course, this isn’t the only option
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Valid marginal IMs, cont.

Follow the general framework I described before:

πy (m) = upper probability of “η(Y ,M) ≤ η(y ,m)”

=

∫ 1

0
sup

(µ,θ):q(µ)>α
PY |µ,θ{η(Y , µ) ≤ η(y ,m)} dα

Computation???

General validity5 results apply here, e.g.,

valid “probabilistic reasoning” about M
certain coherence-like properties hold
{m : πy (m) > α} is a 100(1− α)% confidence set for M

To my knowledge, no other results like this are available...

5Recall, “validity” here is wrt the imprecise joint dist for (Y ,M,ΘM)
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Sparse normal mean

Partial prior: q(M) = q|M|, only depends on cardinality |M|
Relative likelihood6

η(Y ,M) =
exp(− 1

2σ2

∑
i 6∈M Y 2

i ) q|M|

maxk∈0:n{exp(− 1
2σ2

∑
i>k |Y |2[i ]) qk}

Distribution of η(Y ,M) as a function of Y when ΘMc = 0?

In particular, how does the distribution depend on ΘM 6= 0?

Conjecture: η(Y ,M) is stochastically largest when ΘM = 0

Intuitive explanation:

a Yi with large non-zero mean can only make den small
smaller denominator makes ratio η(Y ,M) larger
larger η(Y ,M) makes smaller x 7→ P{η(Y ,M) ≤ x}

6|Y |[1] > |Y |[2] > · · · > |Y |[n], reverse order statistics
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Sparse normal mean, cont.

The conjecture would drastically simplify the computation

In particular, if all Θ’s are zero, then

can use the same Y samples for all the Monte Carlo evals

η(Y ,M)
D
= η(Y , |M|)

Form is actually pretty simple:

πy (m) =
n∑

k=0

(qk − qk−1)PY |0{η(Y , k) ≤ η(y ,m)}, m ∈M

In my examples below, qk = 0.2k , for k = 0, 1, . . . , n
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Sparse normal mean, cont.

n = 3, σ = 1, and y = (0.1, 1.5, 2)
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Sparse normal mean, cont.

n = 3, σ = 1, and y = (0.1, 1.5, 1)
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Remarks

Wouldn’t be too hard to scale this up to larger n

The simplicity is specific to the normal mean problem

Also depends on a conjecture

But keep in mind:

valid UQ about the model
based on partial prior, no unnecessary assumptions needed
neither Bayes nor frequentist can do this

How far can this be pushed?
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Model imprecision

Previously, “PY ,Θ” was based on

a precise model for Y , given Θ = θ
a partial/imprecise prior for Θ

“Y | Θ” could be imprecise too, say, for robustness7

e.g., an ε-contamination nbhd around a given “PY |θ”

Then lower/upper likelihood functions8 become relevant

Ly (θ) = inf PY |θ({y}) = (1− ε)pθ(y)

Ly (θ) = sup PY |θ({y}) = (1− ε)pθ(y) + ε

I don’t have much experience with this...

7Huber & Ronchetti’s Robust Statistics
8I’m assuming Y is discrete here...
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Model/data imprecision

A different perspective emerges with imprecise data9

Start with a simple/extreme case of missing data

In observational studies, it’s common for data to be missing,
e.g., non-response to some/all questions on a survey

Only safe to ignore missing data under strong assumptions

introduces bias if missingness and response are related
can’t test/check for this because missing data is missing

So great care is needed here...

Turns out to have some connection to imprecise probability

9More generally, partially identified models as in Manski’s book
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Model/data imprecision, cont.

Y consists of a pair (Y ,∆)

Y is the actual response value
∆ is the not-missing/missing indicator

There exists a Y value regardless of ∆, it’s just that we don’t
get to see the value of Y if ∆ = 0

There’s a marginal distribution for Y :

pθ(y) = wθ(1)︸ ︷︷ ︸
X

pθ(y | ∆ = 1)︸ ︷︷ ︸
X

+wθ(0)︸ ︷︷ ︸
X

pθ(y | ∆ = 0)︸ ︷︷ ︸
x

Some parts are identified, some aren’t

Hence, Manski’s partial identifiability terminology
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Model/data imprecision, cont.

Unidentified parts can be effectively anything, so the model is
really a contamination nbhd w/ upper likelihood, etc.

Why no imprecise probability in the missing data literature?

If one assumes that missingness is completely random

i.e., Pθ(∆ = 1) is constant in θ
then likelihood only depends on the observed y values
can get MLE etc. directly from this

Assumption might or might not be justifiable

The situation is much more complicated/interesting when
covariates are involved

16 / 19



Model/data imprecision, cont.

More generally, data might be coarse

Measurement of Y has limited precision

Missing data is an extreme case of zero precision
censored data is a common example, a result of not being able
to continuously monitor subjects

Arguably, almost all real problems involve coarse data

Most natural strategy is a random set model

Why don’t you see this approach in the stat literature?

might assume data imprecision is negligible compared to...
like above, if one assumes that coarsening happens randomly,
then likelihood only depends on the “precise model”
MLE, etc., can be obtained w/o thinking about imprecision

Again, more complicated/interesting with covariates
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Summary

Uncertainty and/or imprecision can be at the model level

Existing approaches can deal with model uncertainty, but
(IMO) not in a satisfactory way:

frequentists can choose M̂, but no UQ
Bayesians get UQ, but it requires a (precise and proper) prior
and has no validity guarantees10

New framework for strongly valid marginal IMs applies, at
least in principle, right off the shelf

Questions remain about efficient computation

I didn’t really say anything about model/data imprecision

My very modest goal was just to point out that these issues
exist and deserve serious attention

10See plots in M. ISIPTA’19
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Next lecture

Simpson’s paradox

general setup & why it’s scary
connection to imprecise probability

Miscellany
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