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This lecture

Simpson’s paradox

general setup
what happens, why it’s scary, etc.
foundational implications
connection to imprecise probability

..........
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Introduction

Simpson’s paradox sometimes appears in “applied” courses

Very roughly, Simpson’s paradox1 concerns cases where

conclusions go one way when a variable is included
but go completely the other way when it’s excluded

In other words, two “correct” statistical analyses of the same
data can reach completely opposite conclusions

Counter-intuitive, hence the name “paradox”

There are connections between Simpson’s paradox and

foundations of statistics
imprecise probability

1Idea is from Simpson (JRSS-B 1951), name is from Blyth (JASA 1972)
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What is it?

(X ,Y ) relationship?

Counter-intuitive:

ignoring the colors, the
trend is negative
but both color-specific
trends are positive

More formally:
two joint dist’s,

→ (X ,Y )
→ {(X ,Y ) | Z = z}

can be very different

https://en.wikipedia.org/wiki/

Simpson’s_paradox
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Why does it matter?

Two “correct” statistical analyses of the same data can reach
completely opposite conclusions!

Lots of real examples of this; one is below

Can have major scientific and sociological consequences

Relates to How to lie with statistics

intentionally
or unintentionally

Have to be aware of the issue to avoid getting bitten by it
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Example: UC Berkeley gender bias study23

Famous admissions study from 1973

Y = admitted (yes/no), X = gender (male/female)

Data show signs of gender bias favoring male applicants

i.e., P(Y = yes | X = male)� P(Y = yes | X = female)

Significant, can’t be explained by sampling variation

Fire administrators? More “inclusive” admission policies? ...

2https://en.wikipedia.org/wiki/Simpson’s_paradox
3Another racial bias example in my ST503 Week 12b materials
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Example, cont.

Previous results ignore department-level data

Z = department applied for (A, B, C,...)

Different picture emerges after conditioning on Z

We’d probably regret firing administrators or implementing
admissions policies that penalized male applicants
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Example, cont.

Both of the analyses are “correct”

one makes conclusions about the marginal association
the other makes conclusions about conditional associations

The question is which of these is most relevant

Unfortunately, most people doing these analyses — and the
ones retweeting the conclusions — don’t know the difference

Analysis with the conclusion that best aligns with one’s
opinion or agenda is the “correct” one

Our statistics education (undergrad to PhD) falls way short
on issues like this beyond “applied” and “theory”
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Why is Simpson’s paradox scary?

The issue with Simpson’s paradox, apparent in the plot and
the gender bias illustration, is this:

the marginal analysis doesn’t show the whole story

When we have access to the relevant variable Z , then it’s
arguably misleading to ignore/hide/marginalize it

But every real-life problem is like this

(X ,Y ,Z
(m)
1 ,Z

(m)
2 , . . .︸ ︷︷ ︸

measured

,Z
(u)
1 ,Z

(u)
2 , . . .︸ ︷︷ ︸

unmeasured

)

Question: How do we know that the “whole story” we’re after
isn’t contained in the unmeasured Z ’s?

No method, algorithm, or theorem can protect us from this...
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Math behind Simpson’s paradox

Focus on the discrete case, X = Y = {0, 1}
We’re looking for a situation in which

P(Y = 1 | X = 1, z) > P(Y = 1 | X = 0, z) for all z
and P(Y = 1 | X = 1) < P(Y = 1 | X = 0)

Total probability formula

P(Y = 1 | X = 1) =
∑
z

P(Y = 1 | X = 1, z) P(Z = z | X = 1)

P(Y = 1 | X = 0) =
∑
z

P(Y = 1 | X = 0, z) P(Z = z | X = 0)

No restrictions on P(Z = z | X = x)

So Simpson’s reversal can happen when the distribution of Z ,
given X = x , differs greatly depending on x

Clearly can’t happen if Z is independent of X
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Math behind Simpson, cont.

Two sets of conditionals:

p1 = (0.93, 0.73)
p0 = (0.87, 0.69)

Two marginals:

m1(w) = wp11 + (1− w)p12

m0(w) = w rp01 + (1− w r )p02

Range of r ∈ (0, 1]

When r is small:

z | x depends on x
m0(w) > m1(w)
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Foundational implications

Recall the recent discussion of decision theory and the von
Neumann–Morganstern result

Roughly, vNM says that the following are equivalent:

agent makes decisions “rationally”
he has a probability–utility function pair and his decisions are
based on maximizing expected utility

Clear implications for Bayesian decision theory, etc.

Leonard “Jimmie” Savage4 aimed to do more, to demonstrate
that probability is essential to this

Surprisingly, Simpson’s paradox turned out to be an obstacle

4The Foundations of Statistics book, 1954
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Foundations, cont.

Crucial to Savage’s arguments is the sure-thing principle

Roughly:

partition B of the universe X
suppose f ? � f when I know which B ∈ B occurs
STP: f ? � f even when I don’t know which B ∈ B occurs

Savage’s example of the sure-thing principle.

A businessman contemplates buying a certain piece of property. He con-

siders the outcome of the next presidential election relevant. So, to clarify

the matter to himself, he asks whether he would buy if he knew that the

Democratic candidate were going to win, and decides that he would. Sim-

ilarly, he considers whether he would buy if he knew that the Republican

candidate were going to win, and again finds that he would. Seeing that

he would buy in either event, he decides that he should buy, even though

he does not know which event obtains...
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Foundations, cont.

Blyth’s 1972 JASA paper spotted an issue with STP

basically, STP is based on an assumption that conditional
preferences determine marginal preferences
Simpson’s paradox is a counter-example

Consider a modified version of Savage’s story:5

shrink the scale, replace “president” with “mayor”
businessman doesn’t support Democratic mayoral candidate
still makes the judgment that owning the property is better
than not, regardless of who is mayor
but now he worries that buying the property pre-election might
help the Democratic candidate win

So: the businessman isn’t necessarily irrational to wait until
after the election to purchase the property, even though the
purchase is justified regardless of who is mayor

5This is based on Judea Pearl’s paper entitled “The sure-thing principle”
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Connections to imprecise probability

Simpson’s paradox has the makings of a sure-loss situation

if my conditional probabilities are are ordered one way,
and my marginal probabilities are ordered the opposite
then there’s a mistake or something weird is going on
so there must be a way to make me a fool

Gong & Meng’s6 Theorem 5.1 states this formally

Can imprecise probability help to avoid Simpson’s paradox?

In principle, yes — just introduce a vacuous model for the
unmeasured variables

But this only creates a new problem...

too much uncertainty, you handcuffed yourself
can’t learn from what you observed

6https://ruobingong.github.io/files/GongMeng2021_StatSci.pdf
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Next lecture

Course wrap-up
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